Introduction to Data Mining

José Hernández-Orallo

Dpto. de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia, Spain

jorallo@dsic.upv.es

Roma, 14-15th May 2009

Outline

- Motivation. BI: Old Needs, New Tools.
- Some DM Examples.
- Data Mining: Definition and Applications
- The KDD Process
- Data Mining Techniques
- Development and Implementation

Taxonomy of DM Techniques

The previous taxonomy is simplified by DM tools:

- Predictive: (we have one output variable)
- Classification/categorisation: the output variable is nominal.
- Regression: the output variable is numerical.
- Descriptive: (there is no output variable)
- Clustering: the goal is to discover groups in the data.
- Exploratory analysis:
- Association rules, functional dependencies: the variables are nominal.
- Factorial/correlation analysis, scatter analysis, multivariate analysis: the variables are numerical.

Correspondence DM Tasks / Techniques

- Flexibility: many supervised techniques have been adapted to unsupervised problems (and vice versa).

TECHNIQUE	PREDICTIVE / SUPERVISED		DESCRIPTIVE / UNSUPERVISED		
	Classification	Regression	Clustering	Association rules	Other (factorial, correl, scatter)
Neural Networks	\checkmark	\checkmark	$\checkmark *$		
Decision Trees	$\checkmark(c 4.5)$	\checkmark (CART)	\checkmark		
Kohonen			\checkmark		
Linear regression (local, global), exp..		\checkmark			
Logistic Regression	\checkmark				
Kmeans	$\checkmark *$		\checkmark		
A Priori (associations)				\checkmark	
factorial analysis, multivariate analysis					
CN2	\checkmark				
K-NN	\checkmark		\checkmark		
RBF	\checkmark				
Bayes Classifiers	\checkmark	\checkmark			

Descriptive Methods

Correlation and associations (exploratory analysis, link analysis):

- Correlation coefficient (when the attributes are numerical):
- Example: richness distribution inequality and crime index are positively correlated.
- Associations (when attributes are nominal).
- Example: tobacco and alcohol are associated.
- Functional dependencies: unidirectional association.
- Example: the risk level in cardiovascular illnesses depends on tobacco and alcohol (among other things).

Descriptive Methods

Correlations and factorial analysis:

- Make it possible to establish factor relevance (or irrelevance) and whether the correlation is positive or negative wrt. other factors or the variable on study.

Example (Kiel 2000): Visit analysis: 11 patients, 7 factors:

- Health: patient's health (referred to the capability to make a visit). (1-10)
- Need: patient's certainty that the visit is important. (1-10)
- Transportation: transportation availability to the health centre. (1-10)
- Child Care: availability to leave the children on care of another person. (1-10)
- Sick Time: if the patient is working, the ease to get the sick-off time. (1-10)
- Satisfaction: patient satisfaction with their doctor. (1-10)
- Ease: health centre ease to arrange the visit and the efficiency of the visit. (1-10)
- No-Show: indicates if the patient has gone to the doctor's or not during the last year (0-has gone, 1 hasn't)

Descriptive Methods

Correlations and factorial analysis. Example (contd.): Correlation Matrix:

	Health	Need	Transp'tion	Child Care	Sick Time	Satisfaction	Ease	No-Show
Health	1							
Need	-0.7378	1						
Transportation	0.3116	-01041	1					
Child Care	0.3116	-01041	1	1				
Sick Time	0.2771	0.0602	0.6228	0.6228	1			
Satisfaction	0.22008	-0.1337	0.6538	0.6538	0.6257	1		
Ease	0.3887	-0.0334	0.6504	0.6504	0.6588	0.8964	1	
No-Show	0.3955	-0.5416	-0.5031	-0.5031	-0.7249	-0.3988	-0.3278	1

Regression coefficient:

Independent Variable	Coefficient
Health	.6434
Need	.0445
Transportation	-.2391
Child Care	-.0599
Sick Time	-.7584
Satisfaction	.3537
Ease	-.0786

Indicates that an increment of 1 in the Health factor increases the probability that the patient do not show in a 64.34%

Descriptive Methods

Association rules and dependencies:

Non-directional associations:

- Of the following form:

$$
\left(X_{1}=a\right) \leftrightarrow\left(X_{4}=b\right)
$$

From n rows in the table, we compute the cases in which both parts are simultaneously true or false:

- We get confidence T_{c} :
$T_{c}=$ rule certainty $=r_{c} / n$
We can (or not) consider the null values.

Descriptive Methods

Association Rules:

Directional associations (also called value dependencies) :

- Of the following form (if Ante then Cons):

$$
\text { E.g. if }(X 1=a, X 3=c, X 5=d) \text { then }(X 4=b, X 2=a)
$$

From n rows in the table, the antecedent is true in r_{a} cases and, from these, in r_{c} cases so is the consequent, then we have:

- Two parameters T_{c} (confidence/accuracy) y T_{s} (support):

$$
\begin{aligned}
& T_{c}=\text { rule confidence }=r_{c} / r_{a}: P(\text { Cons } / \text { Ante }) \\
& T_{s}=\text { support }=\left(r_{c} \text { or } r_{c} / n\right): P(\text { Cons } \wedge \text { Ante })
\end{aligned}
$$

Descriptive Methods

Association Rules: Example:

	$\begin{gathered} \text { VINO } \\ \text { "EL CABEZOON" } \end{gathered}$	GASEOSA	$\begin{gathered} \text { VINO } \\ \text { "TiO PACO" } \end{gathered}$	HORCHATA	BIZCOCHOS	GALLETAS	CHOCOLATE "LA VACA"
T1	1	1	0	0	0	1	0
T2	0	1	1	0	0	0	0
T3	0	0	0	1	1	1	0
T4	1	1	0	1	1	1	1
T5	0	0	0	0	0	1	0
T6	1	0	0	0	0	1	1
T7	0	1	1	1	1	0	0
T8	0	0	0	1	1	1	1
T9	1	1	0	0	1	0	1
T10	0	1	0	0	1	0	0

Descriptive Methods

Association Rules. Example:

- If we define a minimal support = 2:
- FIRST STAGE: frequent itemsets:
- Seven sets of only one item (seven attributes)
- From the 7!/5!=42 possible cases with two items, we have 15 itemsets with at least the minimal support.
- 11 itemsets of three items.
- 2 itemsets of four items
- SECOND STAGE: creation of rules from the frequent itemsets:

```
IF bizcochos "Goloso"AND horchata "Xufer"THEN galletas "Trigo"
IF bizcochos "Goloso"AND galletas "Trigo"THEN horchata "Xufer"
IF galletas "Trigo"AND horchata "Xufer"THEN bizcochos "Goloso"
```

Supp=3, Conf=3/4

```
Supp=3, Conf=3/4
Supp=3, Conf=3/3
Supp=3, Conf=3/3
Supp=3, Conf=3/3
```

```
Supp=3, Conf=3/3
```

```

\section*{Descriptive Methods}

\section*{Association Rules.}
- The most common algorithm is "A PRIORI" and derivatives.
- There are many variants for association rules:
- Associations in hierarchies (e.g. product families and categories).
- Negative associations: "80\% of customers who buy frozen pizzas do not buy lentils".
- Associations for non-binary attributes.

\section*{Descriptive Methods}

\section*{Sequential Association Rules:}
- We can establish associacions such as this: "if s/he buys \(X\) in \(T\) s/he will buy \(Y\) in \(T+P\) "

Transaction Database
Example: \begin{tabular}{|l|llll|}
\hline & Customer & \multicolumn{2}{l}{ Transaction Time } & Purchased Items \\
\cline { 2 - 5 } & John & \(6 / 21 / 97\) & \(5: 30 \mathrm{pm}\) & Beer \\
& John & \(6 / 22 / 97\) & \(10: 20 \mathrm{pm}\) & Brandy \\
\cline { 2 - 5 } & Frank & \(6 / 20 / 97\) & \(10: 15 \mathrm{am}\) & Juice, Coke \\
& Frank & \(6 / 20 / 97\) & \(11: 50 \mathrm{am}\) & Beer \\
Frank & \(6 / 21 / 97\) & \(9: 25 \mathrm{am}\) & Wine, Water, CIder \\
\cline { 2 - 5 } & Mitchell & \(6 / 21 / 97\) & \(3: 20 \mathrm{pm}\) & Beer, Gin, Cider \\
\cline { 2 - 5 } & Mary & \(6 / 20 / 97\) & \(2: 30 \mathrm{pm}\) & Beer \\
Mary & \(6 / 21 / 97\) & \(6: 17 \mathrm{pm}\) & Wine, Cider \\
Mary & \(6 / 22 / 97\) & \(5: 05 \mathrm{pm}\) & Brandy \\
\hline & Robin & \(6 / 20 / 97\) & \(11: 05 \mathrm{pm}\) & Brandy \\
\hline
\end{tabular}

\section*{Descriptive Methods}

\section*{Sequential Association Rules:}

\section*{Example (cont.):}

Customer Sequence
\begin{tabular}{|l|l|}
\hline Customer & Customer Sequences \\
\hline John & (Beer) (Brandy) \\
Frank & (Juice, Coke) (Beer) (Wine, Water, Cider) \\
Mitchell & (Beer, Gin, Cider) \\
Mary & (Beer) (Wine, Cider) (Brandy) \\
Robin & (Brandy) \\
\hline
\end{tabular}

\section*{Descriptive Methods}

\section*{Sequential Association Rules:}

\section*{Example (cont.):}

Mining Results
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Sequential Patterns with \\
Support >=40\%
\end{tabular} & \begin{tabular}{l} 
Supporting \\
Customers
\end{tabular} \\
\hline \begin{tabular}{l} 
(Beer) (Brandy) \\
(Beer) (Wine, Cider)
\end{tabular} & \begin{tabular}{l} 
John, Mary \\
Frank, Mary
\end{tabular} \\
\hline
\end{tabular}

\section*{Descriptive Methods}

\section*{Clustering:}

Deals with finding "natural" groups from a dataset such that the instances in the same group have similarities.
- Clustering method:
- Hierarchical: the data is grouped in an tree-like way (e.g. the animal realm).
- Non-hierarchical: the data is grouped in a one-level partition.
- (a) Parametrical: we assume that the conditional densities have some known parametrical form (e.g. Gaussian), and the problem is then reduced to estimate the parameters.
- (b) Non-parametrical: do not assume anything about the way in which the objects are grouped.

\section*{Descriptive Methods}

\section*{Clustering. Hierarchical methods:}

A simple method consists of separating individuals according to their distance. The limit (linkage distance) is increased in order to make groups.

This gives different clustering at several levels, in a hierarchical way.
This is called a Horizontal Hierarchical Tree Plot (or dendrogram)


\section*{Descriptive Methods}

\section*{Clustering. Parametrical Methods:}
(e.g., the algorithm EM, Estimated Means) (Dempster et al. 1977).


Charts:
Enrique Vidal

\section*{Descriptive Methods}

\section*{Clustering. Non-Parametrical Methods}

Methods:
- k-NN
- k-means clustering,
- online \(k\)-means clustering,
- centroids
- SOM (Self-Organizing Maps) or Kohonen networks.

Other more specific algorithms:
- Cobweb (Fisher 1987).
- AUTOCLASS (Cheeseman \& Stutz 1996)

\section*{Descriptive Methods}

\section*{Clustering. Non-Parametrical Methods}

1-NN (Nearest Neighbour):
Given several examples in the variable space, each point is connected to its nearest point:


The connectivity between points generates the clusters.
- In some cases, the clusters are too slow.
- Variants: k-NN.

\section*{Descriptive Methods}

\section*{Clustering. Non-Parametrical Methods}
\(k\)-means clustering:
- Is used to find the \(k\) most dense points in an arbitrarily set of points.


On-line \(k\)-means clustering (competitive learning):
- Incremental refinement.

\section*{Descriptive Methods}

\section*{Clustering. Non-Parametrical Methods}

\section*{\(k\)-means clustering:}





\section*{Descriptive Methods}

\section*{Clustering. Non-Parametrical Methods} SOM (Self-Organizing Maps) or Kohonen Networks
- Also known as LVQ (linear-vector quantization) or associative memory networks (Kohonen 1984).


The neuron matrix is the last layer in a bidimensional grid.

\section*{Descriptive Methods}

\section*{Clustering. Non-Parametrical Methods SOM (Self-Organizing Maps) or Kohonen Networks}


It can also be seen as a network which reduces the dimensionality to 2.

Because of this, it is usual to make a bidimensional representation with the result of the network in order to find clusters visually.

\section*{Descriptive Methods}

\section*{Other Descriptive Methods Statistical Analysis:}
- Data distribution analysis.
- Anomalous data detection.
- Scatter analysis.
- Frequently, these analyses are used previously to determine the most appropriate method for a supervised (predictive) task.
- They are also used regularly for data cleansing and preparation.

\section*{Predictive Methods}

\section*{Global Linear Regression.}
- The coefficients of a linear function fare estimated

For more than two dimensions it can be solved through gradient descent


Non-linear Regression.
- Logarithmic Estimation (the function to obtain is substituted by \(y=\ln (f)\) ). Then, we use linear regression to calculate the coefficients. Next, when we want to predict, we just compute \(f=e^{y}\).

\section*{Pick and Mix - Supercharging}
- New dimensions are added, combining the given dimensions. E.g. \(x_{4}=x_{1} \cdot x_{2}, x_{5}=x_{3}^{2}, x_{6}=x_{1}^{x_{2}}\) and next we get a linear function for \(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\)

\section*{Predictive Methods}

\section*{General non-linear regression.}
- Adaptative regression and time series. In this case, we usually assume a time order for one of the variables:

- Markov chains.
- Vector Quantization
- MARS (Multiple Adaptive Regression Splines) Algorithm.
- ...

\section*{Predictive Methods}
k-NN (Nearest Neighbour): can be used for classification

\(k\)-means clustering:

(Poliedric or Voronoi)
- Can also be adapted to Supervised Learning, if used conveniently.


\section*{Predictive Methods}

\section*{Perceptron Learning.}

Inputs

- Computes a linear function.
\[
y_{j}^{\prime}=\sum_{i=1}^{n} w_{i, j} \cdot x_{i}
\]


LINEAR PARTITION POSSIBLE


\section*{Predictive Methods}

Multilayer Perceptron (Artificial Neural Networks, ANN).
- The one-layer perceptron is not able to learn even the most simplest functions.
- We add new internal layers.


NON-LINEAR MULTIPLE PARTITION IS POSSIBLE WITH 4 INTERNAL
UNITS

\section*{Predictive Methods}

\section*{Support Vector Machines (SVM) / Kernel methods}
- The basis is a very simple classifier.
- The typical classifier is just the line (in more dimensions, a hyperplane) which splits the two classes more neatly in such a way that the three nearest examples to the borderline (the three support vectors) are as far as possible.


\section*{Predictive Methods}

\section*{Support Vector Machines (SVM) / Kernel methods}
- This linear discriminant is very efficient (even for hundreds of dimensions/attributes), since only a few examples are considered (many of them far away are just not considered).

What happens if the data is not linearly separable?

- A kernel function is applied in order to increase the number of dimensions, which usually implies that now the data becomes linearly separable..

\section*{Predictive Methods}

\section*{Decision Trees (ID3 (Quinlan), C4.5 (Quinlan), CART).}
- Example C4.5 with nominal data:
\begin{tabular}{clllll} 
Example & Sky & Temperature Humidity & Wind & PlayTennis \\
1 & Sunny & Hot & High & Weak & No \\
2 & Sunny & Hot & High & Strong & No \\
3 & Overcast & Hot & High & Weak & Yes \\
4 & Rain & Mild & High & Weak & Yes \\
5 & Rain & Cool & Normal & Weak & Yes \\
6 & Rain & Cool & Normal & Strong & No \\
7 & Overcast & Cool & Normal & Strong & Yes \\
8 & Sunny & Mild & High & Weak & No \\
9 & Sunny & Cool & Normal & Weak & Yes \\
10 & Rain & Mild & Normal & Weak & Yes \\
11 & Sunny & Mild & Normal & Strong & Yes \\
12 & Overcast & Mild & High & Strong & Yes \\
13 & Overcast & Hot & Normal & Weak & Yes \\
14 & Rain & Mild & High & Strong & No
\end{tabular}

\section*{Predictive Methods}

\section*{Decision Trees.}
- Example C4.5 with nominal data:

E.g. the instance:
(Outlook \(=\) sunny, Temperature \(=\) cool, Humidity \(=\) high, Wind \(=\) stron! is NO .

\section*{Predictive Methods}

\section*{Naive Bayes Classifiers.}
- More frequently used with nominal/discrete variables. E.g. playtennis:
- We want to classify a new instance:
(Outlook \(=\) sunny, Temperature \(=\) cool, Humidity \(=\) high, Wind \(=\) strong)
\[
\begin{aligned}
& V_{N B}=\underset{c_{i} \in\{\text { yes }, n o\}}{\arg \max } P\left(c_{i}\right) \prod_{j} P\left(x_{j} \mid c_{i}\right)= \\
& =\underset{c_{i} \in\{y e s, n o\}}{\arg \max } P\left(c_{i}\right) \cdot P\left(\text { Outlook }=\text { sunny } \mid c_{i}\right) \cdot P\left(\text { Temperature }=\text { cool } \mid c_{i}\right) \\
& \quad \cdot P\left(\text { Humidity }=\text { high } \mid c_{i}\right) \cdot P\left(\text { Wind }=\text { strong } \mid c_{i}\right)
\end{aligned}
\]
- Estimating the 10 necessary probabilities:
\(P(\) Playtennis=yes \()=9 / 14=.64, \quad P(\) Playtennis=no \()=5 / 14=.36\)
\(P(\) Wind \(=\) strong \(\mid\) Playtennis \(=y e s)=3 / 9=.33\)
\(P(\) Wind \(=\) strong \(\mid\) Playtennis \(=\) no \()=3 / 5=.60\)
- We have that:
\(P\left(\right.\) yes ) \(P\) (sunnylyes) \(P\) (coollyes) \(P\) (high|yes) \(P\) (stronglyes) \(=0.0053_{35}\)
\(\mathbf{P}(\) no \() \mathrm{P}\) (sunny \(\mid\) no \() \mathrm{P}(\) cool \(\mid\) no \() \mathrm{P}\) (high \(\mid\) no \() \mathrm{P}\) (strong \(\mid\) no \()=0.206\)

\section*{Predictive Methods}

\section*{Method comparison:}
- Easy to use.
- Efficient if the number of examples is not very high.
- The value \(k\) can fixed for many applications.
- The partition is very expressive (complex borders).
- Only intelligible visually (2D or 3D).
- Robust to noise but not to non-relevant attributes (distances increases, known as the "the curse of dimensionality")
- The number of layers and elements for each layer are difficult to adjust.
- Neural Networks
- Appropriate for discrete or continuous outputs.
- (multilayer): •Low intelligibility.
- Very sensitive to outliers (anomalous data).
- Many examples needed.

\section*{Predictive Methods}

\section*{Method comparison (contd.):}
- Naive Bayes: \(\left\{\begin{array}{l}\bullet \text { Very easy to use. } \\ \bullet \text { Very efficient (even with many variables). } \\ \bullet \text { THERE IS NO MODEL. }\end{array}\right.\)

- Very easy to use.
- Admit discrete and continuous attributes.
- The output must be finite and discrete (although there are regression decision trees)
- Noise tolerant, to non-relevant attributes and missing attribute values.
- High intelligibility.```

