
BASI DI DATI II − 2 modulo
Parte VII: RDF
Based on tutorials of O. Lassila, R.R. Swick, J.
Cowan, D. Brickley, R.V. Guha, W3C

Prof. Riccardo Torlone
Università Roma Tre

Outline
 RDF
 RDF Schema

What is RDF ?
 Resource Description Framework (RDF) is a

foundation for processing data and metadata in
the Web

 It supports interoperability between
applications that exchange machine-
understandable information on the Web

 RDF emphasises facilities to enable automated
processing of Web resources

 It is a mechanism for describing resources that
makes no assumptions about a particular
application domain

Why RDF ?
 for resource discovery to provide better search

engine capabilities
 for describing the content and content

relationships available at a particular Web site
 for intelligent software agents to facilitate

knowledge sharing and exchange
 for expressing the privacy preferences of a user

as well as the privacy policies of a Web site
 RDF with digital signatures will be key to building

the "Web of Trust" for electronic commerce,
collaboration, and other applications

Basic Objects in RDF Data Model
 Resources
 Properties
 Statements

Resources
 All things being described by RDF expressions

are called resources:
entire Web page;
part of a Web page (e.g. a specific XML

element within the document source);
whole collection of pages (e.g. an entire Web

site);
an object that is not directly accessible via the

Web (e.g. a printed book).

Resources and URIs
 A resource can be anything that has identity
 Uniform Resource Identifiers (URI) provide a

simple and extensible means for identifying a
resource

 Not all resources are network "retrievable";
e.g., human beings, corporations, and books in
a library can also be considered resources

Properties and statements
 A property is a specific aspect, characteristic,

attribute, or relation used to describe a
resource

 Each property has a specific meaning, defines
its permitted values, the types of resources it
can describe, and its relationship with other
properties

 A specific resource together with a named
property plus the value of that property for that
resource is an RDF statement

RDF statement
 Subject of an RDF statement is a resource
 Predicate of an RDF statement is a property of

a resource
 Object of an RDF statement is the value of a

property of a resource

Example of RDF Statement
 Ora Lassila is the creator of the resource

http://www.w3.org/Home/Lassila.

Subject (resource) http://www.w3.org/Home/Lassila
Predicate (property) Creator
Object (literal) “Ora Lassila”

Property with Structural Value Example (1)
 The individual whose name is Ora Lassila,

email <lassila@w3.org>, is the creator of
http://www.w3.org/Home/Lassila.

Subject (resource) http://www.w3.org/Home/Lassila
Predicate (property) Creator
Object (literal) SOMETHING

Subject (resource) SOMETHING
Predicate (property) Name
Object (literal) “Ora Lassila”

Subject (resource) SOMETHING
Predicate (property) Email
Object (literal) lassila@w3.org

Property with Structural Value Example (2)

Property with Structural Value Example (3)
 The individual referred to by employee id 85740 is

named Ora Lassila and has the email address
lassila@w3.org.

 The resource http://www.w3.org/Home/Lassila was
created by this individual.

Property with Structural Value Example (4)

Subject (resource) http://www.w3.org/Home/Lassila
Predicate (property) Creator
Object (literal) http://www.w3.org/staffid/85740

Subject (resource) http://www.w3.org/staffid/85740
Predicate (property) Name
Object (literal) “Ora Lassila”

Subject (resource) http://www.w3.org/staffid/85740
Predicate (property) Email
Object (literal) lassila@w3.org

RDF Serialisation Syntax
[1] RDF ::= ['<rdf:RDF>'] description* ['</rdf:RDF>']
[2] description ::= '<rdf:Description' idAboutAttr? '>' propertyElt* '</rdf:Description> '
[3] idAboutAttr ::= idAttr | aboutAttr
[4] aboutAttr ::= 'about="' URI-reference '"'
[5] idAttr ::= 'ID="' IDsymbol '"'
[6] propertyElt ::= '<' propName '>' value '</' propName '>' | '<' propName

resourceAttr '/>'
[7] propName ::= Qname
[8] value ::= description | string
[9] resourceAttr ::= 'resource="' URI-reference '"'
[10] Qname ::= [NSprefix ':'] name
[11] URI-reference ::= string, interpreted per [URI]
[12] IDsymbol ::= (any legal XML name symbol)
[13] name ::= (any legal XML name symbol)
[14] NSprefix ::= (any legal XML namespace prefix)
[15] string ::= (any XML text, with "<", ">", and "&" escaped)

RDF Statement Example
 Ora Lassila is the creator of the resource

http://www.w3.org/Home/Lassila.

<rdf:RDF>
<rdf:Description about=

"http://www.w3.org/Home/Lassila">
<s:Creator>Ora Lassila</s:Creator>

</rdf:Description>
</rdf:RDF>

Subject

Predicate

Object

RDF Statement Example
 Ora Lassila is the creator of the resource

http://www.w3.org/Home/Lassila.

<rdf:RDF>
<rdf:Description about=

"http://www.w3.org/Home/Lassila">
<s:Creator>Ora Lassila</s:Creator>

</rdf:Description>
</rdf:RDF>

a specific namespace prefix as reference to an
ontology where predicates are defined, e.g.:
xmlns:s="http://description.org/schema/"

RDF Statement Example
 Versione completa

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:s="http://description.org/schema/">
<rdf:Description about="http://www.w3.org/Home/Lassila">

<s:Creator>Ora Lassila</s:Creator>
</rdf:Description>

</rdf:RDF>

RDF Abbreviated Syntax
[2a] description ::= '<rdf:Description' idAboutAttr? propAttr* '/>'

| '<rdf:Description' idAboutAttr? propAttr* '>'
propertyElt* '</rdf:Description>'

| typedNode
[6a] propertyElt ::= '<' propName '>' value '</' propName '>'

| '<' propName resourceAttr? propAttr* '/>'
[16] propAttr ::= propName '="' string '"'

(with embedded quotes escaped)
[17] typedNode ::= '<' typeName idAboutAttr? propAttr* '/>'

| '<' typeName idAboutAttr? propAttr* '>'
property* '</' typeName '>'

RDF Abbreviated Syntax
 While the serialisation syntax shows the

structure of an RDF model most clearly, often it
is desirable to use a more compact XML form.

<rdf:RDF>
<rdf:Description

about="http://www.w3.org/Home/Lassila"
s:Creator="Ora Lassila" />

</rdf:RDF>

Serialisation vs. Abbreviated Syntax
 The individual referred to by employee id 85740 is named Ora Lassila

and has the email address lassila@w3.org. The resource
http://www.w3.org/Home/Lassila was created by this individual.

<rdf:RDF>
<rdf:Description about="http://www.w3.org/Home/Lassila">

<s:Creator>
<rdf:Description about="http://www.w3.org/staffId/85740">

<v:Name>Ora Lassila</v:Name>
<v:Email>lassila@w3.org</v:Email>

</rdf:Description>
</s:Creator>

</rdf:Description>
</rdf:RDF>

<rdf:RDF>
<rdf:Description about="http://www.w3.org/Home/Lassila">

<s:Creator rdf:resource="http://www.w3.org/staffId/85740"
v:Name="Ora Lassila"
v:Email="lassila@w3.org" />

</rdf:Description>
</rdf:RDF>

Serialisation syntax used

Abbreviated syntax used

An alternative notation for blank nodes
<rdf:RDF>

<rdf:Description about="http://www.w3.org/Home/Lassila">
<s:Creator rdf:parseType="Resource">

<v:Name>Ora Lassila</v:Name>
<v:Email>lassila@w3.org</v:Email>

</s:Creator>
</rdf:Description>

</rdf:RDF>

<rdf:RDF>
<rdf:Description about="http://www.w3.org/Home/Lassila">

<s:Creator rdf:parseType="Resource"
v:Name="Ora Lassila"
v:Email="lassila@w3.org" />

</rdf:Description>
</rdf:RDF>

RDF N3 syntax
 Notation3, or N3 as it is more commonly known, is a

shorthand non-XML serialization of RDF models, designed
with human-readability in mind: N3 is much more compact
and readable than XML RDF notation. The format is being
developed by Tim Berners-Lee and others from the Semantic
Web community.

RDF sample in
N3 notation

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://en.wikipedia.org/wiki/Tony_Benn">

<dc:title>Tony Benn</dc:title>

<dc:publisher>Wikipedia</dc:publisher>

</rdf:Description>

</rdf:RDF>

@prefix dc:<http://purl.org/dc/elements/1.1/">

<http://en.wikipedia.org/wiki/Tony_Benn>

dc:title "Tony Benn";

dc:publisher "Wikipedia".

RDF sample in
XML notation

RDF N3 basics
 Collection of statements like:

<#pat> <#knows> <#jo> .
 Shortcuts: (5 statements in 1)

<#pat> <#child> <#al>, <#chaz>, <#mo> ;
<#age> 24 ;
<#eyecolor> "blue" .

 Blank nodes:
<#pat> <#child> [<#age> 4] , [<#age> 3].

 Sharing concepts:
<#bill> <http://purl.org/dc/elements/1.1/title> "Primer".

 Using prefix:
@prefix dc: <http://purl.org/dc/elements/1.1/> .
<#bill> dc:title "Primer".

 Using the default prefix (for the document we are writing):
@prefix : <#> .
:pat :child [:age 4] , [:age 3].

Riccardo Torlone: Basi di Dati 2 24

Some N3 syntax specifics

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

:Professor a rdfs:Class

<http://www.cs.jyu.fi/ai/vagan> a :Professor

Ontological statements in N3

<http://www.w3.org/2000/01/rdf-schema#> edu:hasDept

[dc:title "Department of Computer Science"] ,

[dc:title "Department of Psychology"] .

Blank Nodes in Notation 3

<http://princeton.edu> geo:lat "40.35" ; geo:long "-74.66" .

N3 Syntactic Sugar: Semicolons

<http://www.princeton.edu> ed:hasDept <http://www.cs.princeton.edu> ,

<http://www.math.princeton.edu> , <http://history.princeton.edu> .

N3 Syntactic Sugar: Commas

RDF N3 examples
 Simple statement

 :John :Loves :Mary .

 Reified statement
 [:John :Loves :Mary] :accordingTo :Bill .

 Goal statement:
 gb:I gb:want [:John :Loves :Mary] .

 The prefix gb: is used here to denote the
ontology of S-APL.

Containers
 Frequently it is necessary to refer to a

collection of resources
 RDF containers are used to hold such lists of

resources or literals.
 There are three types of a container:
bag
sequence
alternative

Container Syntax
[18] container ::= sequence | bag | alternative
[19] sequence ::= '<rdf:Seq' idAttr? '>' member* '</rdf:Seq>'
[20] bag ::= '<rdf:Bag' idAttr? '>' member* '</rdf:Bag>'
[21] alternative ::= '<rdf:Alt' idAttr? '>' member+ '</rdf:Alt>'
[22] member ::= referencedItem | inlineItem
[23] referencedItem ::= '<rdf:li' resourceAttr '/>'
[24] inlineItem ::= '<rdf:li>' value '</rdf:li>'

Containers. Bag.
 An unordered list of resources or literals.
 Bags are used to declare that a property has

multiple values and that there is no
significance to the order in which the values
are given.

 Bag might be used to give a list of part
numbers where the order of processing the
parts does not matter. Duplicate values are
permitted.

Bag Example (1)
 The students in course 6.001 are Amy, Tim,

John, Mary, and Sue

Bag Example (2)
 The graph has eight nodes and seven arcs. The first node is the

resource /courses/6.001. An arc labelled students connects this
node to an unnamed node. An arc labelled rdf:type connects the
unnamed node to a node labelled rdf:Bag. Five additional arcs
labelled rdf:_1, rdf:_2, rdf:_3, rdf:_4, and rdf:_5 connect the
unnamed node to nodes labelled, respectively, /Students/Amy,
/Students/Tim, /Students/John, /Students/Mary, and
/Students/Sue. All the nodes are represented as ovals.

Bag Example (3)
 The students in course 6.001 are Amy, Tim, John, Mary,

and Sue

<rdf:RDF>
<rdf:Description about="http://mycollege.edu/courses/6.001">
<s:students>

<rdf:Bag>
<rdf:li resource="http://mycollege.edu/students/Amy"/>
<rdf:li resource="http://mycollege.edu/students/Tim"/>
<rdf:li resource="http://mycollege.edu/students/John"/>
<rdf:li resource="http://mycollege.edu/students/Mary"/>
<rdf:li resource="http://mycollege.edu/students/Sue"/>

</rdf:Bag>
</s:students>
</rdf:Description>

</rdf:RDF>

Graphical representation in IsaViz

Riccardo Torlone: Basi di Dati 2 33

Containers: Sequence
 An ordered list of resources or literals.
 Sequence is used to declare that a property

has multiple values and that the order of the
values is significant.

 Sequence might be used, for example, to
preserve an alphabetical ordering of values.

 Duplicate values are permitted.

Containers: Alternative
 A list of resources or literals that represent

alternatives for the (single) value of a property.
 An application using a property whose value is

an Alternative collection is aware that it can
choose any one of the items in the list as
appropriate

Alternative Example (1)
 The source code for X11 may be found at

ftp.x.org, ftp.cs.purdue.edu, or ftp.eu.net

Alternative Example (2)
 The graph has six nodes and five arcs. The first node is the

resource http://x.org/packages/X11. An arc labelled
DistributionSite connects this node to an unnamed node. An arc
labelled rdf:type connects the unnamed node to a node labelled
rdf:Alt. Three additional arcs labelled rdf:_1, rdf:_2, and rdf:_3
connect the unnamed node to nodes labelled, respectively,
ftp.x.org, ftp.cs.purdue.edu, and ftp.eu.net. All the nodes are
represented as ovals

Alternative Example (3)
 The source code for X11 may be found at ftp.x.org,

ftp.cs.purdue.edu, or ftp.eu.net.

<rdf:RDF>
<rdf:Description about="http://x.org/packages/X11">

<s:DistributionSite>
<rdf:Alt>

<rdf:li resource="ftp://ftp.x.org"/>
<rdf:li resource="ftp://ftp.cs.purdue.edu"/>
<rdf:li resource="ftp://ftp.eu.net"/>

</rdf:Alt>
</s:DistributionSite>

</rdf:Description>
</rdf:RDF>

Repeated Property Example
 Sue has written "Anthology of Time", "Zoological Reasoning",

"Gravitational Reflections".
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:s="http://description.org/schema/">

<rdf:Description rdf:about=
"http://www.books.org/books/AnthologyOfTime">

<dc:creator rdf:Resource="http://www.writers.org/people/Sue" />
<dc:title>Anthology of Time</dc:title>

</rdf:Description>
<rdf:Description rdf:about=

"http://www.books.org/books/ZoologicalReasoning">
<dc:creator rdf:Resource="http://www.writers.org/people/Sue" />
<dc:title>Zoological Reasoning</dc:title>

</rdf:Description>
<rdf:Description rdf:about=

"http://www.books.org/books/GravitationalReflections">
<dc:creator rdf:Resource="http://www.writers.org/people/Sue"/>
<dc:title>Gravitational Reflections</dc:Title>

</rdf:Description>
<rdf:Description rdf:about="http://www.writers.org/people/Sue">
<s:Name>Sue</s:Name>

</rdf:Description>
</rdf:RDF>

Containers vs. Repeated Properties (1)

There is no stated
relationship between the
publications other than
that they were written by
the same person

Containers vs. Repeated Properties (2)
 The committee of Fred, Wilma, and Dino

approved the resolution.

three committee members
as a whole voted in a
certain manner; it does not
necessarily state that each
committee member voted
in favour of the resolution.

Statements about Statements (1)
 For example, let us consider the sentence:
“Ora Lassila is the creator of the resource

http://www.w3.org/Home/Lassila”.
 RDF would regard this sentence as a fact.
 If, instead, we write the sentence:
“Ralph Swick says that Ora Lassila is the

creator of the resource
http://www.w3.org/Home/Lassila”

 … we have said nothing about the resource
http://www.w3.org/Home/Lassila; instead, we
have expressed a fact about a statement
Ralph has made.

Statements about Statements (2)
 To model statements, RDF defines the following properties:

 subject
 The subject property identifies the resource being described by the

modelled statement; that is, the value of the subject property is the
resource about which the original statement was made (e.g.,
http://www.w3.org/Home/Lassila).

 predicate
 The predicate property identifies the original property in the

modelled statement. The value of the predicate property is a
resource representing the specific property in the original
statement (in our example, creator).

 object
 The object property identifies the property value in the modelled

statement. The value of the object property is the object in the
original statement (in our example, "Ora Lassila").

 type
 The value of the type property describes the type of the new

resource. All reified statements are instances of RDF:Statement;
that is, they have a type property whose object is RDF:Statement.

Statements about Statements (3)
 “Ralph Swick says that Ora Lassila is the creator

of the resource http://www.w3.org/Home/Lassila”

Statements about Statements (4)
 “Ralph Swick says that Ora Lassila is the creator of the

resource http://www.w3.org/Home/Lassila”

<rdf:RDF
xmlns:rdf="http://w3.org/TR/1999/PR-rdf-syntax-19990105#"
xmlns:a="http://description.org/schema/">
<rdf:Description>

<rdf:subject resource="http://www.w3.org/Home/Lassila" />
<rdf:predicate resource="http://description.org/schema#Creator"/>
<rdf:object>Ora Lassila</rdf:object>
<rdf:type resource="http://w3.org/TR/1999/PR-rdf-syntax-

19990105#Statement"/>
<a:attributedTo>Ralph Swick</a:attributedTo>

</rdf:Description>
</rdf:RDF>

Statements about containers
<rdf:Description about="http://www.cs.jyu.fi/vagan/courses/ITKS544">
<s:lectures>

<rdf:Bag ID="pages">
<rdf:li rdf:resource=

"http://www.cs.jyu.fi/vagan/courses/ITKS544/Lecture_1.ppt">
<rdf:li rdf:resource=

"http://www.cs.jyu.fi/vagan/courses/ITKS544/Lecture_2.ppt">
...

<rdf:li rdf:resource=
"http://www.cs.jyu.fi/vagan/courses/ITKS544/Lecture_8.ppt">

</rdf:Bag>
</s:lectures>

</rdf:Description>

<rdf:Description about="#pages">
<dc:creator> Vagan Terziyan </dc:creator>

</rdf:Description>

Sharing Values between Sequences (1)
 Consider the case of specifying 3 collected works of

an author, sorted once by publication date and sorted
again alphabetically by subject.

Sharing Values between Sequences (2)
<RDF xmlns="http://w3.org/TR/1999/PR-rdf-syntax-19990105#">

<Seq ID="JSPapersByDate">
<li resource="http://www.dogworld.com/Aug96.doc"/>
<li resource="http://www.webnuts.net/Jan97.html"/>
<li resource="http://www.carchat.com/Sept97.html"/>

</Seq>
<Seq ID="JSPapersBySubj">

<li resource="http://www.carchat.com/Sept97.html"/>
<li resource="http://www.dogworld.com/Aug96.doc"/>
<li resource="http://www.webnuts.net/Jan97.html"/>

</Seq>
</RDF>

Ternary Relation (1)
 John Smith’s weight is 200 pounds

Ternary Relation (2)
 John Smith’s weight is 200 pounds

<RDF
xmlns="http://w3.org/TR/1999/PR-rdf-syntax-19990105#"
xmlns:rdf="http://w3.org/TR/1999/PR-rdf-syntax-19990105#"
xmlns:n="http://www.nist.gov/units/">
<Description about="John_Smith">

<n:weight rdf:parseType="Resource">
<rdf:value>200</rdf:value>
<n:units rdf:resource="http://www.nist.gov/units/Pounds"/>

</n:weight>
</Description>

</RDF>

Why RDFS ?
 Resource description communities require the

ability to describe the organization of certain kinds
of resources.

 The declaration of these properties (attributes)
and their corresponding semantics are defined in
the context of RDF as an RDF schema.

 A schema defines not only the properties of the
resource but may also define the kinds of
resources being described.

 RDF schema lets developers define a particular
vocabulary for RDF data and specify the kinds of
object to which these attributes can be applied.

What is RDFS ?
 The RDF Schema is a collection of RDF

resources that can be used to describe the
schema of other RDF resources.

 The core schema vocabulary is defined in a
namespace informally called 'rdfs', and identified
by the URI reference:
http://www.w3.org/2000/01/rdf-schema#.

 Specification also uses the prefix 'rdf' to refer to
the core RDF namespace:
http://www.w3.org/1999/02/22-rdf-syntax-ns#.

 Latest RDFS description (15 December 2003)
http://www.w3.org/TR/2003/PR-rdf-schema-

20031215/

What is RDFS ?
 RDF Schema
Describe the organization of RDF data
Defines vocabulary for RDF
Organizes this vocabulary in a typed hierarchy

 Class, subClassOf, type, Property, subPropertyOf

 Rich, web-based publication format for
declaring semantics (XML for exchange)

 Capability to explicitly declare semantic
relations between vocabulary terms

RDF Schemas
 Semantic network on the Web
 Nodes are identified by URIs
 Main constructs:
rdfs:Class
rdfs:Property
rdf:type

RDF Classes
 Are collections of similar Web resources
 Have URIs to identify them
 The special class “rdfs:Literal” consists of all

possible RDF string values

Property-centric classes
 In typical OO classes, each class specifies

completely what properties it has and what
their types are

 In RDF classes, each property specifies what
classes of subjects and objects it relates

 Therefore, new properties can be added to a
class without modifying the class

Specifying classes
 To specify a class, create an RDF resource of type

rdf:Class, for example:

<rdf:Class id="MyClass">
<rdfs:label>My Class</rdfs:label>
<rdfs:comment>Vagan Terziyan’s demonstration

class</rdfs:comment>
</rdf:Class>

Specifying properties
 To specify a property, create an RDF resource of type

rdf:Property, for example:

<rdf:Property id="myProperty">
<rdfs:comment>Vagan Terziyan’s demo

property</rdfs:comment>
<rdfs:domain resource="#MyClass"/>
<rdfs:range resource=

"http://www.w3.org/2000/01/rdf-schema#Literal"/>
<rdf:Property>

Domain and Range of a Property
 “rdfs:domain” specifies the domain of a

property (the class of its subjects); if unknown,
anything can be a subject
More formally: if a pair (x,y) is an instance of P,

then x is an instance of the class domain.
 rdfs:range specifies the range of a property

(the single class of its objects); if unknown,
anything can be an object
More formally: a pair (x,y) can only be an

instance of P if y is an instance of the calss
range

Riccardo Torlone: Basi di Dati 2 59

Other RDF constructs (1)

60

 “rdfs:subClassOf” relates a subclass to its
superclass

 “rdfs:subPropertyOf” relates a subproperty to
its superproperty

 “rdfs:seeAlso” relates a resource to another
resource explaining it

 “rdfs:isDefinedBy” the definition of the subject
resource

Other RDF constructs (2)
 “rdf:subject” is the property relating a reified

statement to its subject (resource)
 “rdf:predicate” is the property relating a reified

statement to its predicate (property)
 “rdf:object” is the property relating a reified

statement to its object (value)

61

Other RDF constructs (3)
 “rdfs:label” specifies a human-readable name

for this Class, Property, or whatever
 “rdfs:comment” specifies human-readable

documentation

62

63

Predefined classes (1)
 “rdfs:Resource” is the class of all resources
 “rdfs:Literal” is the class of all strings
 “rdfs:Class” is the class of all classes
 “rdfs:Property” is the class of all properties
 “rdf:Statement” is the class of all asserted RDF

statements

64

Predefined classes (2)
 “rdfs:Container” is the superclass of all

container classes
 “rdf:Bag”, “rdf:Seq”, “rdf:Alt” are the classes of

Bags, Seqs, and Alts
 (Any other class that is a subclass of

“rdfs:Container” can be used in RDF syntax in
place of a standard container)

Predefined class hierarchy of RDFS (1)

Predefined class hierarchy of RDFS (2)
 Class hierarchy is shown using a "nodes and

arcs" graph representation of the RDF data
model.

 If one class is a subset of another, then there
is an rdfs:subClassOf arc from the node
representing the first class to the node
representing the second.

 If a resource is an instance of a class, then
there is an rdf:type arc from the resource to the
node representing the class.

Riccardo Torlone: Basi di Dati 2 66

RDF & RDFS example (by Emily Chen)

Dublin Core
 A set of fifteen basic properties for describing

generalised Web resources
 ISO Standard 15836-2003 (February 2003):

http://www.niso.org/international/SC4/n515.pdf
 The Dublin Core Metadata Initiative is an open

forum engaged in the development of
interoperable online metadata standards that
support a broad range of purposes and
business models: http://dublincore.org/

68

Dublin Core (1): Title
 Label: Title
 Definition: A name given to the resource.
 Comment: Typically, Title will be a name by

which the resource is formally known.

69

Dublin Core (2): Creator
 Label: Creator
 Definition: An entity primarily responsible for

making the content of the resource.
 Comment: Examples of Creator include a

person, an organization, or a service. Typically,
the name of a Creator should be used to
indicate the entity.

70

Dublin Core (3): Subject
 Label: Subject and Keywords
 Definition: A topic of the content of the

resource.
 Comment: Typically, Subject will be expressed

as keywords, key phrases or classification
codes that describe a topic of the resource.
Recommended best practice is to select a
value from a controlled vocabulary or formal
classification scheme.

71

Dublin Core (4): Description
 Label: Description
 Definition: An account of the content of the

resource.
 Comment: Examples of Description include,

but is not limited to: an abstract, table of
contents, reference to a graphical
representation of content or a free-text account
of the content.

72

Dublin Core (5): Publisher
 Label: Publisher
 Definition: An entity responsible for making the

resource available.
 Comment: Examples of Publisher include a

person, an organization, or a service. Typically,
the name of a Publisher should be used to
indicate the entity.

73

Dublin Core (6): Contributor
 Label: Contributor
 Definition: An entity responsible for making

contributions to the content of the resource.
 Comment: Examples of Contributor include a

person, an organization, or a service. Typically,
the name of a Contributor should be used to
indicate the entity.

74

Dublin Core (7): Date
 Label: Date
 Definition: A date of an event in the lifecycle of

the resource.
 Comment: Typically, Date will be associated

with the creation or availability of the resource.
Recommended best practice for encoding the
date value is defined in a profile of ISO 8601
[http://dublincore.org/documents/dces/#w3cdtf]
and includes (among others) dates of the form
YYYY-MM-DD.

75

Dublin Core (8): Type
 Label: Resource Type
 Definition: The nature or genre of the content of

the resource.
 Comment: Type includes terms describing general

categories, functions, genres, or aggregation
levels for content. Recommended best practice is
to select a value from a controlled vocabulary (for
example, the DCMI Type Vocabulary
[http://dublincore.org/documents/dces/#dct1]). To
describe the physical or digital manifestation of
the resource, use the FORMAT element.

76

Dublin Core (9): Format
 Label: Format
 Definition: The physical or digital manifestation of

the resource.
 Comment: Typically, Format may include the

media-type or dimensions of the resource. Format
may be used to identify the software, hardware, or
other equipment needed to display or operate the
resource. Examples of dimensions include size
and duration. Recommended best practice is to
select a value from a controlled vocabulary (for
example, the list of Internet Media Types
[http://dublincore.org/documents/dces/#mime]
defining computer media formats).

77

Dublin Core (10): Identifier
 Label: Resource Identifier
 Definition: An unambiguous reference to the

resource within a given context.
 Comment: Recommended best practice is to

identify the resource by means of a string or
number conforming to a formal identification
system. Formal identification systems include
but are not limited to the Uniform Resource
Identifier (URI) (including the Uniform
Resource Locator (URL)), the Digital Object
Identifier (DOI) and the International Standard
Book Number (ISBN).

78

Dublin Core (11): Source
 Label: Source
 Definition: A Reference to a resource from

which the present resource is derived.
 Comment: The present resource may be

derived from the Source resource in whole or
in part. Recommended best practice is to
identify the referenced resource by means of a
string or number conforming to a formal
identification system.

79

Dublin Core (12): Language
 Label: Language
 Definition: A language of the intellectual content of

the resource.
 Comment: Recommended best practice is to use

RFC 3066
[http://dublincore.org/documents/dces/#rfc3066]
which, in conjunction with ISO639
[http://dublincore.org/documents/dces/#iso639]),
defines two- and three-letter primary language
tags with optional subtags. Examples include "en"
or "eng" for English, "akk" for Akkadian", and "en-
GB" for English used in the United Kingdom.

80

Dublin Core (13): Relation
 Label: Relation
 Definition: A reference to a related resource.
 Comment: Recommended best practice is to

identify the referenced resource by means of a
string or number conforming to a formal
identification system.

81

Dublin Core (14): Coverage
 Label: Coverage
 Definition: The extent or scope of the content of the

resource.
 Comment: Typically, Coverage will include spatial

location (a place name or geographic coordinates),
temporal period (a period label, date, or date range) or
jurisdiction (such as a named administrative entity).
Recommended best practice is to select a value from
a controlled vocabulary (for example, the Thesaurus
of Geographic Names
[http://www.getty.edu/research/tools/vocabulary/
tgn/index.html]) and to use, where appropriate, named
places or time periods in preference to numeric
identifiers such as sets of coordinates or date ranges.

82

Dublin Core (15): Rights
 Label: Rights Management
 Definition: Information about rights held in and

over the resource.
 Comment: Typically, Rights will contain a rights

management statement for the resource, or
reference a service providing such information.
Rights information often encompasses
Intellectual Property Rights (IPR), Copyright,
and various Property Rights. If the Rights
element is absent, no assumptions may be
made about any rights held in or over the
resource.

83

Dublin Core Example
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:dc="http://purl.org/dc/elements/1.0/">
<rdf:Description rdf:about="http://www.ukoln.ac.uk/metadata/

resources/dc/datamodel/WD-dc-rdf/">
<dc:title> Guidance on expressing the Dublin Core within the

Resource Description Framework (RDF) </dc:title>
<dc:creator> Eric Miller </dc:creator>
<dc:creator> Paul Miller </dc:creator>
<dc:creator> Dan Brickley </dc:creator>
<dc:subject> Dublin Core; Resource Description Framework; RDF;

eXtensible Markup Language; XML </dc:subject>
<dc:publisher> Dublin Core Metadata Initiative </dc:publisher>
<dc:contributor> Dublin Core Data Model Working

Group </dc:contributor>
<dc:date> 1999-07-01 </dc:date>
<dc:format> text/html </dc:format>
<dc:language> en </dc:language>

</rdf:Description>
</rdf:RDF>

Example expresses the following class hierarchy. We first define a
class MotorVehicle. We then define three subclasses of MotorVehicle,
namely PassengerVehicle, Truck and Van. We then define a class
Minivan which is a subclass of both Van and PassengerVehicle.

First example (1)

First example (2)
<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
<!-- Note: this RDF schema would typically be used in RDF instance

data by referencing it with an XML namespace declaration, for
example xmlns:xyz="http://www.w3.org/2000/03/example/vehicles#".
This allows us to use abbreviations such as xyz:MotorVehicle to
refer unambiguously to the RDF class 'MotorVehicle'. -->

<rdf:Description ID="MotorVehicle">
<rdf:type resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:subClassOf rdf:resource=

"http://www.w3.org/2000/01/rdf-schema#Resource"/>
</rdf:Description>

<rdf:Description ID="PassengerVehicle">
<rdf:type resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:subClassOf rdf:resource="#MotorVehicle"/>

</rdf:Description>

...

First example (3)

...
<rdf:Description ID="Truck">

<rdf:type resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:subClassOf rdf:resource="#MotorVehicle"/>

</rdf:Description>

<rdf:Description ID="Van">
<rdf:type resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:subClassOf rdf:resource="#MotorVehicle"/>

</rdf:Description>

<rdf:Description ID="MiniVan">
<rdf:type resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
<rdfs:subClassOf rdf:resource="#Van"/>
<rdfs:subClassOf rdf:resource="#PassengerVehicle"/>

</rdf:Description>

</rdf:RDF>

First example (4)
Alternative notation:
<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="MotorVehicle">
<rdfs:comment>Vehicle with a motor.</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="PassengerVehicle">
<rdfs:comment>Vehicle with passagers.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#MotorVehicle"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Truck">
<rdfs:comment>Truck.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#MotorVehicle"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Van">
<rdfs:comment>Van.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#MotorVehicle"/>

</rdfs:Class>

<rdfs:Class rdf:ID="MiniVan">
<rdfs:comment>Little van.</rdfs:comment>
<rdfs:subClassOf rdf:resource="#Van"/>
<rdfs:subClassOf rdf:resource="#PassengerVehicle"/>

</rdfs:Class>

</rdf:RDF>

Example of sub-property (1)

<rdf:RDF xml:lang="en"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Person">
<rdfs:comment>Human being.</rdfs:comment>

</rdfs:Class>

<rdf:Property rdf:ID="biologicalParent">
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="rdfs:Literal"/>

</rdf:Property>

<rdf:Property rdf:ID="biologicalFather">
<rdf:type resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:subPropertyOf rdf:resource="#biologicalParent"/>

</rdf:Description>

</rdf:RDF>

If the property biologicalFather is a subproperty of the broader property
biologicalParent, and if Fred is the biologicalFather of John, then it is
implied that Fred is also the biologicalParent of John.

Example of sub-property (2)

Riccardo Torlone: Basi di Dati 2 90

Another Example (1)

In this example, Person is a class with a corresponding human-readable
description of "The class of people". Animal is a class presumed to be
defined in another schema. All persons are animals, so we declare that
Person is a subclass of Animal. A Person may have an age property. The
value of age is an integer. A Person may also have an ssn ("Social Security
Number") property. The value of ssn is an integer. Person's marital status is
one of {Single, Married, Divorced, Widowed}. This is achieved through use
of the rdfs:range constraint: we define both a maritalStatus property and a
class MaritalStatus (adopting the convention of using lower case letters to
begin the names of properties, and capitals for classes). We then use
rdfs:range to state that a maritalStatus property only 'makes sense' when it
has a value which is an instance of the class MaritalStatus. The schema
then defines a number of instances of this class.

Another Example (2)
<rdf:RDF xml:lang="en"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Person">
<rdfs:comment>The class of people.</rdfs:comment>
<rdfs:subClassOf rdf:resource=

"http://www.w3.org/2000/03/example/classes#Animal"/>
</rdfs:Class>

<rdf:Property rdf:ID="maritalStatus">
<rdfs:range rdf:resource="#MaritalStatus"/>
<rdfs:domain rdf:resource="#Person"/>

</rdf:Property>

...

Another Example (3)
...

<rdf:Property rdf:ID="ssn">
<rdfs:comment>Social Security Number</rdfs:comment>
<rdfs:range rdf:resource=

"http://www.w3.org/2000/03/example/classes#Integer"/>
<rdfs:domain rdf:resource="#Person"/>

</rdf:Property>

<rdf:Property rdf:ID="age">
<rdfs:range rdf:resource=

"http://www.w3.org/2000/03/example/classes#Integer"/>
<rdfs:domain rdf:resource="#Person"/>

</rdf:Property>

<rdfs:Class rdf:ID="MaritalStatus"/>
<MaritalStatus rdf:ID="Married"/>
<MaritalStatus rdf:ID="Divorced"/>
<MaritalStatus rdf:ID="Single"/>
<MaritalStatus rdf:ID="Widowed"/>

</rdf:RDF>

Another Example

Riccardo Torlone: Basi di Dati 2 94

Essential Online Resources
 http://www.w3.org/RDF/
 http://www.w3.org/TR/rdf-schema/

Riccardo Torlone: Basi di Dati 2 95

