

May 31, 2011 DIA@RomaTRE

Semantic Technologies For Business Process Management

Fabrizio Smith (IASI-CNR, Univaq) Maurizio Proietti (IASI-CNR) Michele Missikoff (IASI-CNR)

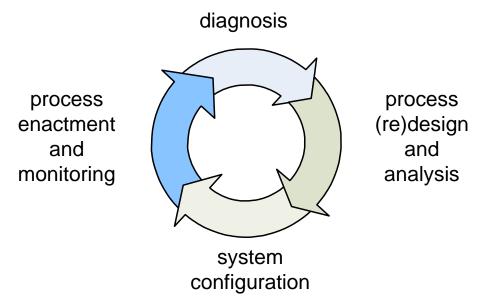
Outline

(Semantic) Business Process Management

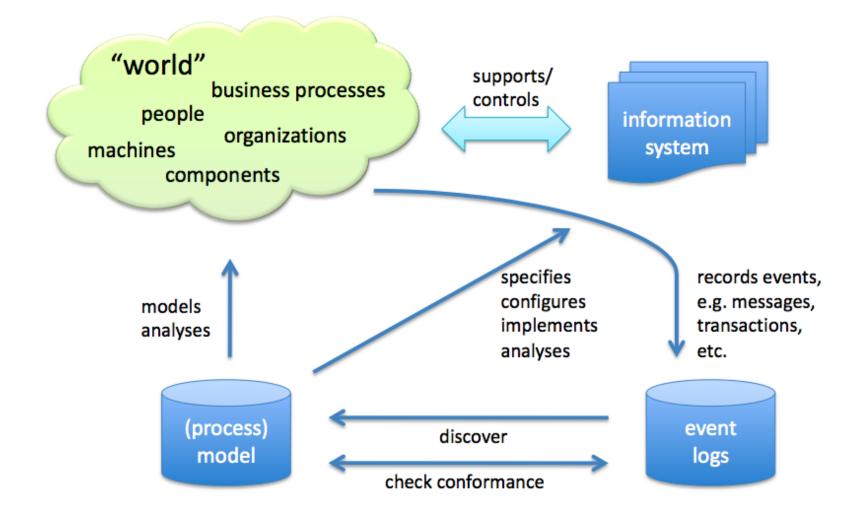
- Introducing Business Process Management
- Business Process Interoperability
- Semantic Approaches for Enterprise Modeling
- Reasoning on Semantically Enriched Business Processes
 - BPAL Framework
 - Querying BPAL Business Process Knowledge Bases
- Students' Project Proposals

(Semantic) Business Process Management

Business Processes and Workflows

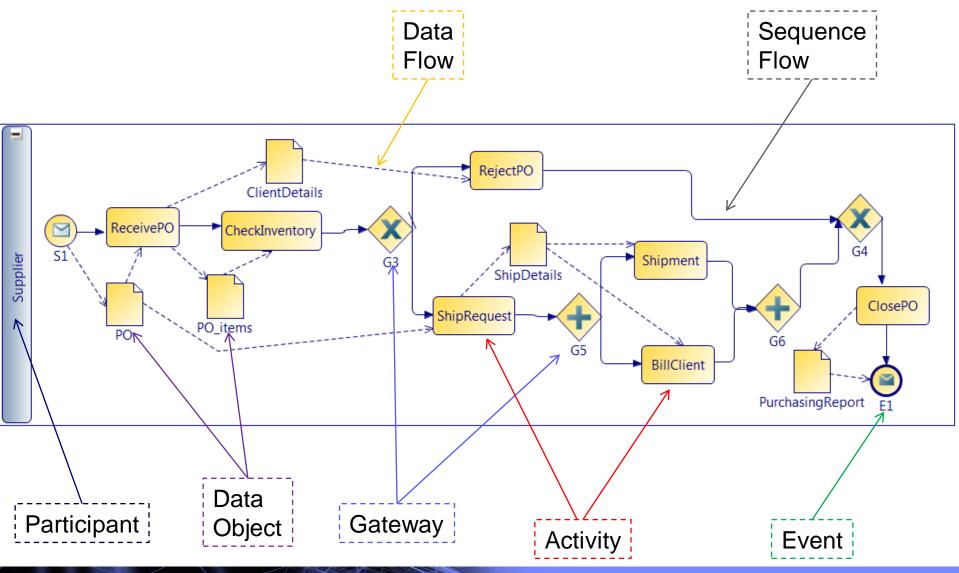

- A Business Process (BP) consists of a set of activities that are performed in coordination in an organizational and technical environments. These activities jointly realize a business goal. Each BP is enacted by a single organization, but it may interact with BPs performed by other organizations [1].
- A Workflow system automates a BP, in whole or in part, during which documents, information, or tasks are passed from one participant to another for action.

A workflow typically involves:

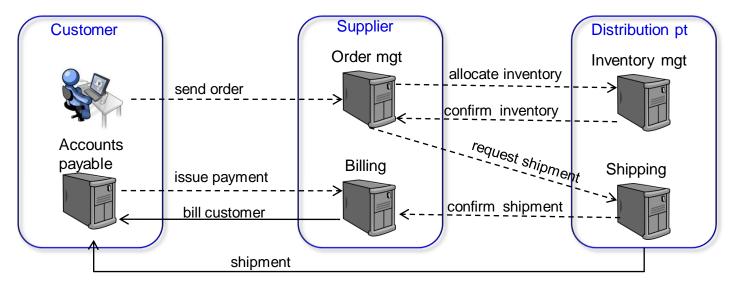

- Activities
- Decision Points
- Routes (e.g., sequential, parallel)
- Resources
- Roles

Business Process Management (BPM)

- BP Management is a collection of methods and techniques to assist business practitioners and employees in the management of business processes along their entire life cycle [2].
 - BPM views processes as central in an organization
 - Potential for substantial cost & time savings (e.g. business process improvement)
 - Managerial and technical ramifications


On the role of models (from [2])

BP Modelling Languages


- The Business Process Modelling Notation (BPMN)
 - Graphical notation for process modelling
 - OMG standard (current version 2.0)
 - Not executable, designed for conceptual modelling (semantics loosely defined)
 - XPDL 2.0 as XML serialization
- Business Process Execution Language (BPEL)
 - Derived from IBM's WSFL and Microsoft's XLANG
 - Define executable Web service orchestrations (XML, SOAP, WSDL)
- Yet Another Workflow Language (YAWL)
 - Formal Semantics (Petri-nets)
 - Comprehensive support for the workflow patterns

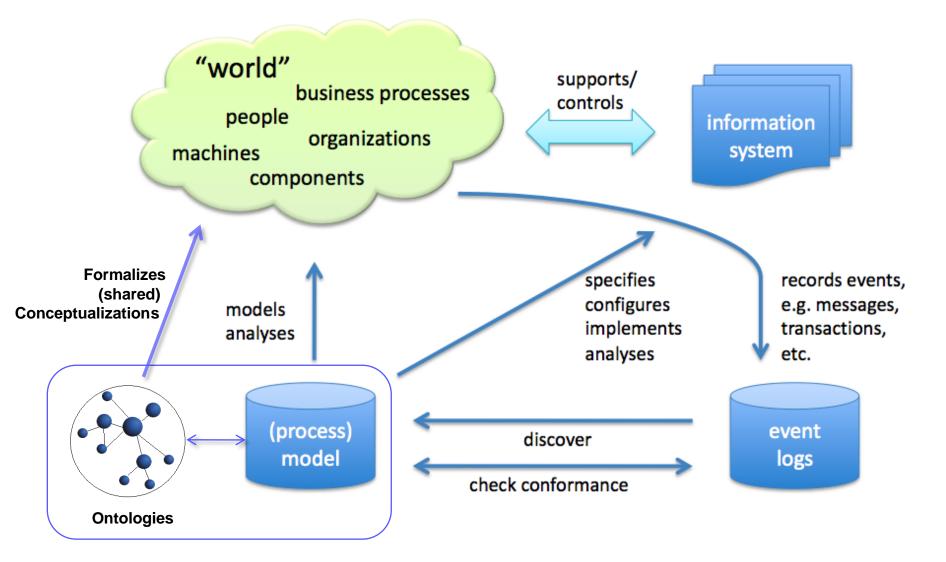
BPMN Overview

Cross-Enterprise Business Processes

- Strong acceleration towards new forms of cooperation among enterprises
 - A networked enterprise integrates the resources of the participating organizations allowing them to pursue shared objectives in a tightly coordinated fashion, operating as a unique (virtual) organization.
- BP Integration deals with the definition of a global commonly accepted BP that specifies execution logic and the information exchange between multiple interconnected enterprises to form a single logical system.

The Role of SOA

- Service Oriented Architecture is a design philosophy where a system is designed to provide services to either end-user applications or other services distributed in a network, via published and discoverable interfaces.
- The implementation of SOA through Web Services, allow packaged functionalities to be offered as a suite of "interoperable" services, with interfaces defined independently from the *underlying technologies*.
- Business Processes defined as Service orchestrations
 - built from a logically interrelated collection of services, possibly implemented and deployed as web services;
 - composite services can be defined by combining existing elementary or composite services, that are in turn offered as high-level services or processes.


The Semantic Interoperability Problem

- Service-oriented computing offers a technical means for building crossenterprise processes.
- We have the semantic interoperability problem arises both at a data level and at a process level.
 - BPs are built by using different tools, according to different business logics, and using different labels and terminology to denote activities and resources.
 - A common view of the business domain should be used...
 - ...together with descriptions of the local BPs according to such an agreed common view.

Semantic BPM

- Promising solutions for the enhancement of BP management tools from the area of the Knowledge Representation to ease:
 - interoperability between software applications and reuse/exchange of knowledge between human actors
 - automation in the specification, analysis, implementation and monitoring
 - same principles at the basis of the Semantic Web vision
 - see, e.g., the SUPER (http://www.ip-super.org/), COIN (http://www.coin-ip.eu/) and PLUG-IT (http://plug-it.org/) European projects.
- Shared vocabularies (aka Ontologies) to describe processes
 - Input / output
 - Involved resources (data models, organizational models)
 - Goal
 - Pre-conditions and effects
 - Non-functional information (e.g., QoS)
 - See, e.g., OWL-S [3] and WSMO [4]

On the role of models...again

What is an Ontology?

- Ontology: the philosophical discipline
 - Study of *what there is*
 - Study of the *nature* and *structure* of "reality"

A (philosophical) ontology is a structured system of entities assumed to exists, organized in categories and relations.

Computational ontologies:

Specific (theoretical or computational) artifacts expressing the *intended meaning* of a *vocabulary* in terms of *primitive* categories and relations describing the *nature* and *structure* of a *domain of discourse*

...in order to account for the competent use of vocabulary in real situations!

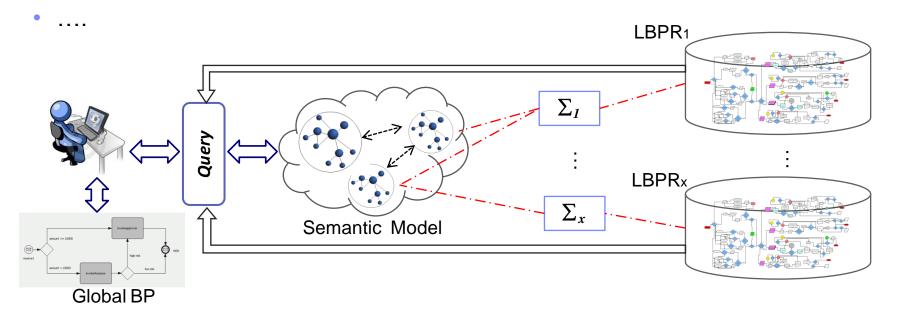
Gruber: "Explicit and formal specifications of a *conceptualization*"

Ontology Languages in the Semantic Web

@ RDF

- Generic mechanism for describing resources
- Data Model based on *statements* in the form of triples *<subject,predicate,object>*
- @ RDFS
 - An RDF vocabulary to describe other RDF vocabularies
 - Introduces hierarchies and domain and range restrictions on properties

@ OWL


- Ideally, an extension of RDFS with new modeling primitives (strong relationship with Description Logics)
- Several sub-language. Among them, **OWL-RL**:
 - subset designed for practical implementations using rule-based techniques
 - semantics is an upward-compatible extension of RDF and RDFS
 - axiomatisation of the OWL 2 RDF-Based Semantics (OWL 2 RL/RDF rules) in the form of first-order implications

 $<?o,rdf:type,?x>, <?x,rdfs:subClassOf,?z> \rightarrow <?o,rdf:type,?z>$

Ontologies... for what?

Reasoning with BPs through a suitable semantic model used for the annotation of BP Repositories

- Query & retrieval
- Similarity reasoning
- Composition

Reasoning on Semantically Enriched Business Processes

Motivations and Goal

Several open issues regarding

- the synergy between workflow languages and ontologies:
 - execution semantics (enactment, correctness of BP executions,...)
 - verification (deadlocks, livelocks, ...)
 - taxonomic reasoning

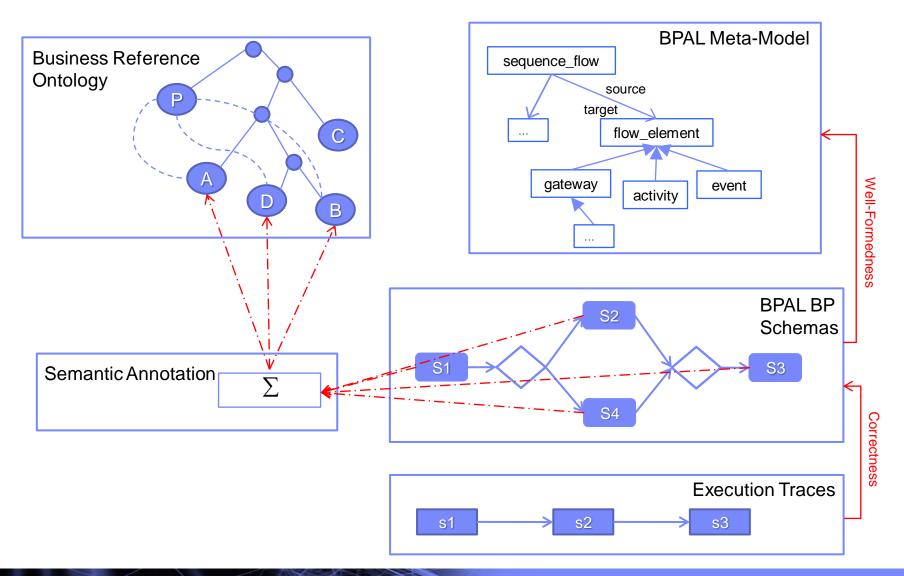
• ...

- the accomplishment of reasoning services involving both these components:
 - business rules (modeling and compliance verification)
 - querying & retrieval (reuse, composition, ...)

• ...

Our goal is to provide a uniform and formal representation of both the workflowrelated and the ontology-related (domain) knowledge.

BPAL Framework

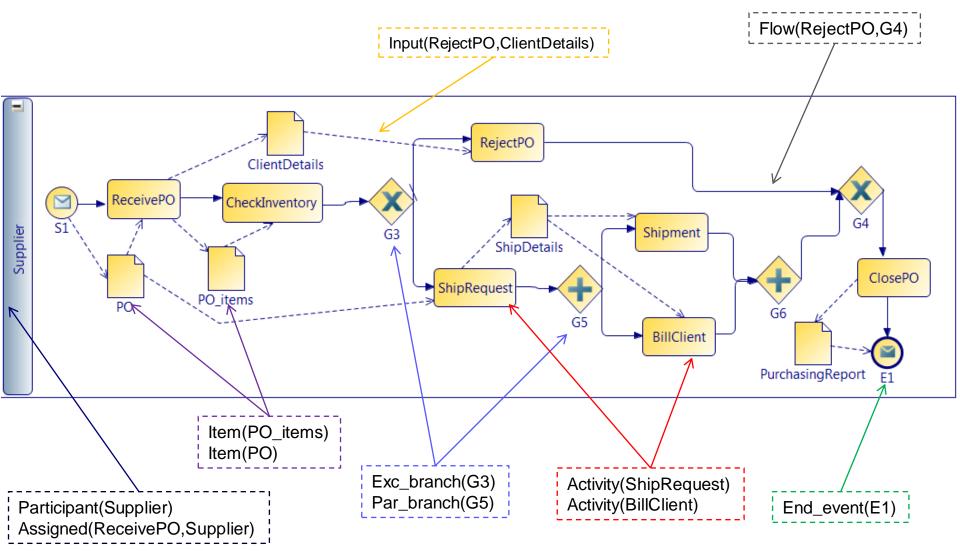

BPAL (Business Process Abstract Language)

- A declarative modeling method to capture the procedural knowledge of a BP
- Based on widely accepted modeling languages (i.e., BPMN)
- Provided with an explicit formalization of the meta-model and execution semantics (suited for automated reasoning)
- Semantic Enrichment through Reference Ontologies
 - OWL-RL support (more or less Description Logic Programs)

Formalization in Logic Programming

- Uniform and formal representation
- Support by tools developed in the area of logic programming
- A BPAL specification (meta-model, schema and trace semantics) can be queried by any Prolog system (no need for ad-hoc compiler)

Business Process Knowledge Base



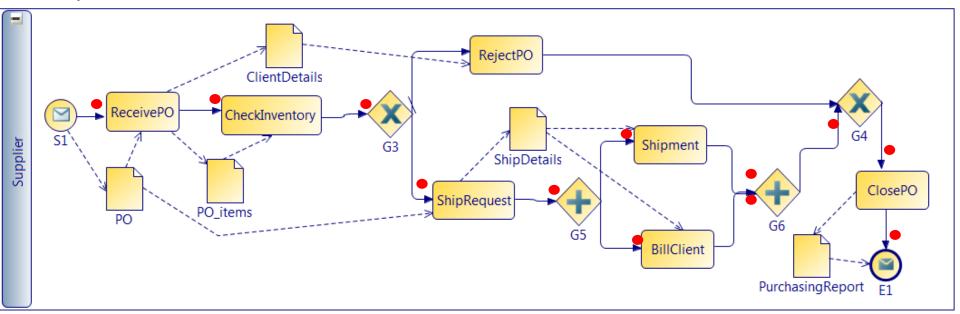
BPAL

- BPAL [3] is a logic-based language (i.e., a set of predicates and constants) conceived to provide a declarative modeling method capable of fully capturing procedural knowledge in a business process.
 - its core is based on BPMN 2.0 specification

 A BPAL business process schema (BPS) is specified by a set of ground facts of the form $p(C_1, ..., C_n)$, where $C_1, ..., C_n$ are constants denoting BPS elements (e.g., business activities, events, and gateways) and p is a BPAL predicate.

BPAL Overview

BPAL Meta-model


The BPAL Meta-model theory (M) formalizes a set of structural properties of a BPS, that at this level is regarded as a labeled graph:

- Well-formedness, defining how the constructs provided by the BPAL language can be used to build BPS correct from a syntactical point of view:
 - *local properties,* e.g., every activity must have at most one incoming and at most one outgoing sequence flow;
 - global properties, e.g., every flow element must lie on a path from the start to the end.
- Structuredness, of a (sub-)process:
 - each branch point is matched with a merge point of the same type, and such branch-merge pairs are also properly nested.
- *Reachability* between nodes;
- Containment of an element within a (sub-process);

≻ ...

Execution Semantics

A process trace represents a possible execution of a business process, reflecting a sequence of token-transitions

- Start(FulfillPO)
- Complete(ReceivePO)
- Complete(CheckInventory)
- Choice(G3,ShipRequest)
- Complete(ShipRequest)

- Fork(Shipment,BillClient)
- Complete(Shipment)
- Complete(BillClient)
- Synch(Shipment,BillClient)
- Merge(G6)

- Complete(ClosePO)
- End(FulfillPO)

Trace Theory

The execution semantics of a BPS is formalized by the theory T, in terms of state transitions:

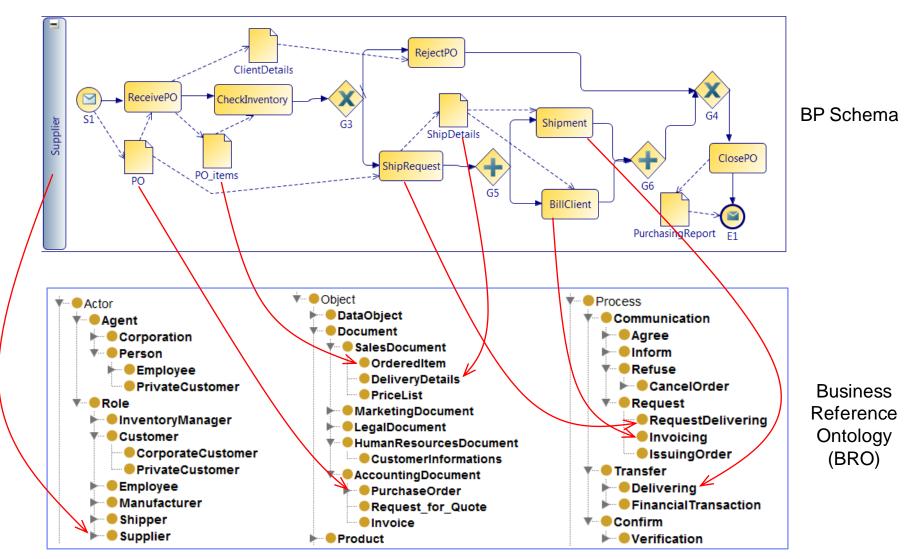
 $\begin{array}{rl} \mbox{trans}(S,\mbox{complete}(A),Z) &\leftarrow & \\ & \mbox{activity}(A) \land & \\ & \mbox{holds}(\mbox{token}(A1,A),S) \land & \\ & \mbox{flow}(A,B) \land & \\ & Z = (S - \{\mbox{token}(A1,A)\}) & \cup \mbox{token}(A,B). \end{array}$

> *TR* is *trace* from S to Z if *trans*(S, *TR*₁, Z₁) \land *trans*(Z₁, *TR*₂, Z₂) $\land \ldots \land$ *trans*(Z_n, *TR*_{n+1}, Z) and *TR* = [*TR*₁, *TR*₂, ..., *TR*_{n+1}].

T can be used to:

- verify the correctness of a trace w.r.t. a given BPS
- generate the set of correct traces given a BPS
- verify ordering properties (i.e., dependency constraints)

Behavioral Properties


In theory

- Exploration of the state space
- Model Checking (CTL)
- Very Expensive

In practice

- Some relevant properties can be verified with ad-hoc strategies, without state space exploration
 - precedence(a,b) if b is executed then a has been previously executed
 - response(a,b) if a is executed then b will be executed after
 - *mutex(a,b)* a and b are never both executed
 - coexistence(a,b) neither a nor b are executed, or they are both executed

Semantic Annotation

Annotated Business Process

```
<rdf:Description rdf:about="bps:ReceivePO">
<rdf:type rdf:resource="bpal:Activity"/>
<bpal:input rdf:resource="bps:PO"/>
<bpal:model_ref>http://acme/ACME.xpdl#_123</bpal:model_ref>
....
```

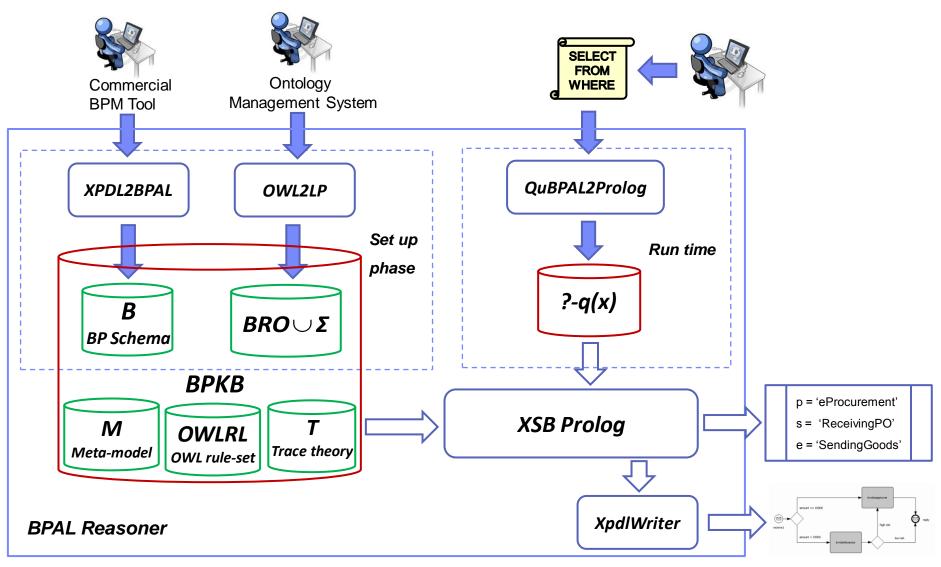
</rdf:Description>

```
<rdf:Description rdf:about="bps:BillClient">
<rdf:type rdf:resource="bpal:Activity"/>
<bpal:sigma rdf:resource="bro:Invoicing"/>
<bpal:assigned rdf:resource="bps:Supplier"/>
....
</rdf:Description>
```

```
<rdf:Description rdf:about="bps:PO">
<rdf:type rdf:resource="bpal:Item"/>
<bpal:sigma rdf:resource="bro:PurchaseOrder"/>
```

```
</rdf:Description>
```

```
<rdf:Description rdf:about="bps:Supplier">
<rdf:type rdf:resource="bpal:Participant"/>
```


```
</rdf:Description>
```

Reasoning on the BPKB

The BPKB [4] can be translated to a Logic Program to model and reason with:

- process structure (BPAL schema + Meta-model): flow elements (activities, events, gateways) and their relationships (sequence flows);
- process executions (BPAL schema + Trace semantics): behavior at execution time and properties regarding the temporal sequencing of activities in the set of correct traces;
- domain knowledge (Ontology + Semantic Annotation): domain entities (processes, actors, object) and their relationships.
- The BPAL framework provides:
 - a reasoning engine, based on Logic Programming, that operates on a BPKB;
 - a BP query language, developed on top of the reasoning engine;
 - a verification mechanism, tightly connected to the latter.

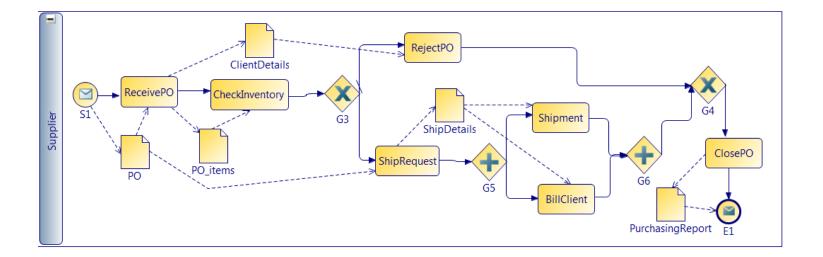
BPAL Reasoner

QuBPAL

- A SELECT-FROM-WHERE query language for the BPKB
 - translation into logic programs, nested and disjunctive queries

SELECT statement: output of the query evaluation

- a sequence $?x^*$ of variables occurring in the WHERE statement
- a BPS, denoted by the process identifier <?bpld>
- a sub-process of a BPS, denoted by the triple <?bpld,?start,?end>
- FROM statement: the process(es) from which data is to be retrieved
 - a non empty sequence of BP schemas or sub-processes (<bpld>|<bpld,start,end>)+
- WHERE statement: a sentence built from
 - the set of the predicates defined in the BPKB;
 - the connectives AND, OR, NOT, and the predicate = with the standard logic semantics;
 - another QuBPAL query, to allow nested queries.

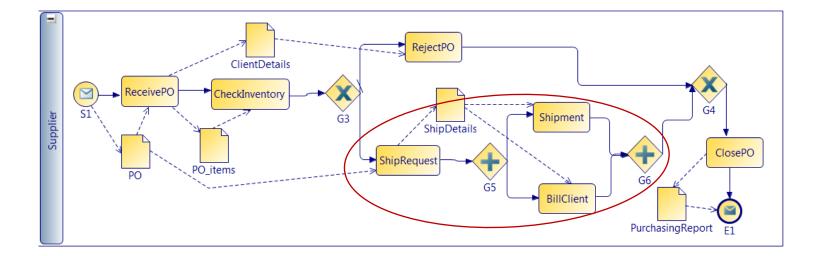

If the arguments used in the query, bpsEl::conc stands for "bpsEl is annotated with conc"

Query Example

Retrieve any process where a purchase order is processed and that provides services for the invoicing and the delivering of goods.

SELECT <?p> FROM *

WHERE belongs(?a1,?p) AND input(?a1,?po::bro:PurchaseOrder) AND belongs(?a2::bro:Invoicing,?p) AND belongs(?a3::bro:Delivering,?p)


Query Example

Retrieve any sub-process that i) starts with an activity that processes a purchase order, and ii) both a delivering and an invoicing are eventually executed.

SELECT <?p,?s,?e >

FROM *

WHERE input(?s,?po::bro:PurchaseOrder) AND response(?s,?a1::bro:Invoicing,?p,?s,?e) AND response(?s,?a2::bro:Delivering,?p,?s,?e)

Students' Project Proposals

Oevelopment of an Eclipse Plug-in for the management of the BPKB

- Current work-in-progress
- Similarity Reasoning
 - Automatic support for annotation
 - Similarity measures for processes
 - Adopt/adapt ontology matching techniques
- Query processing / optimization
 - Currently a simple algorithm for the re-ordering of literals is implemented
- @ Graphical editor for QuBPAL queries
- Support for other standard BP modeling languages (e.g., BPEL)
 - Mapping from/to BPAL

References

- [1] Mathias Weske. Business Process Management: Concepts, Languages, Architectures. Springer Verlag, 2007.
- [2] ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N.: Modern Business Process Automation: YAWL and its Support Environment. Springer, 2010.
- [3] W3C: OWL-S, Semantic markup for web services. 22 november 2004, http://www.w3.org/Submission/OWL-S/.
- [4] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontology, 1(1): 77-106, IOS Press, 2005.
- [5] De Nicola A., Missikoff M., Proietti M., Smith F.: An Open Platform for Business Process Modeling and Verification, International Conference on Database and Expert Systems Applications, DEXA, LNCS 6261, Springer, September 2010.
- [6] Missikoff M., Proietti M., Smith F.: Querying Semantically Enriched Business Processes. 22st International Conference on Database and Expert Systems Applications (DEXA 2011), Toulouse, France, 2011.

Thanks for your attention, any question?

