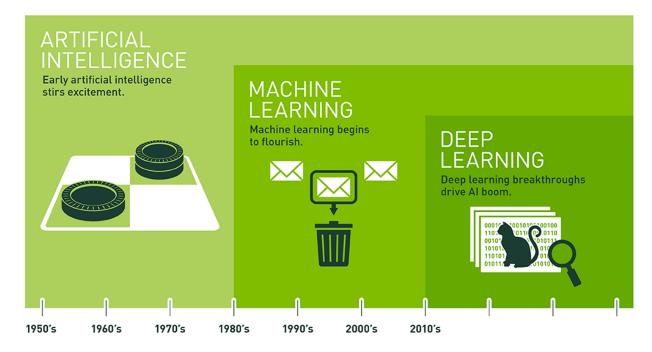
### Explainable interpretations for the Entity Resolution task

Donatella Firmani

donatella.firmani@u niroma3.it

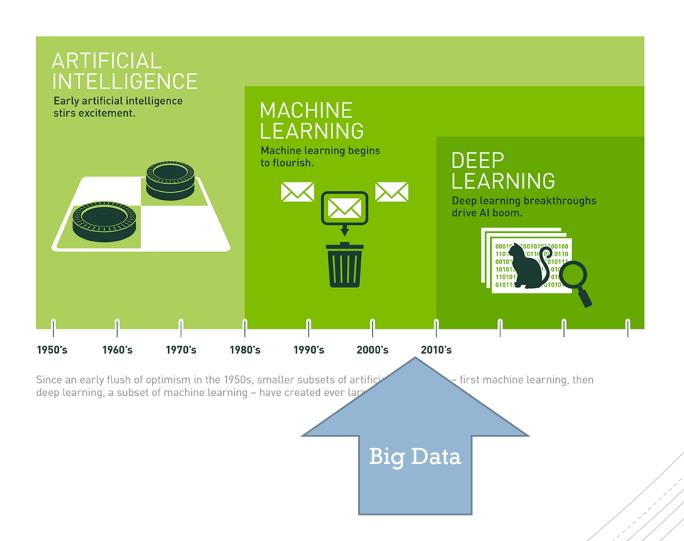
Big Data Seminars 2020





Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

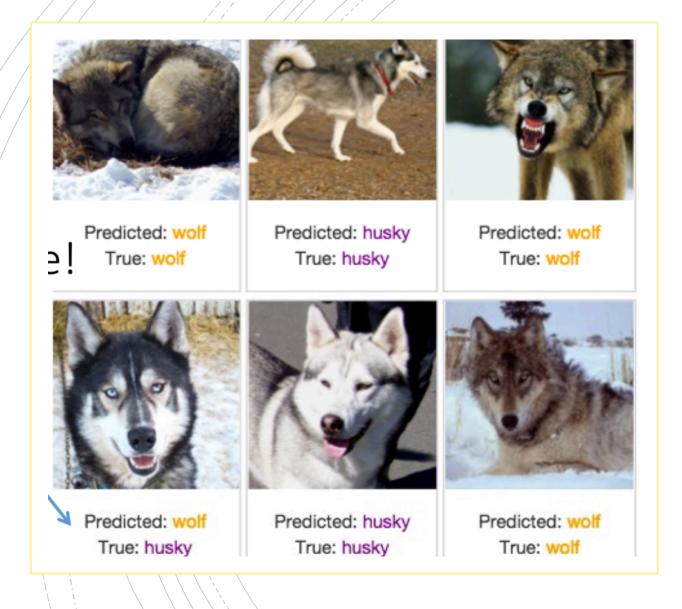
#### Brief History of Al





#### Data

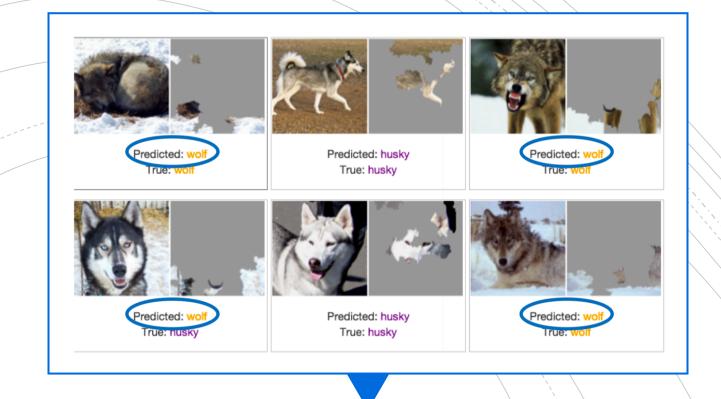
- By relying on patterns in training data, machine learning can solve a specific task without using explicit instructions.
- Unprecedented accuracy in many application scenarios



#### Husky vs Wolf

- Only 1 prediction mistake: great accuracy
- Interested in "Why" questions, rather than "How Accurate"?

https://filene.org/assets/images-layout/Panel\_Singh.pdf



#### Or snow vs land?

Pixels on the right are experimentally shown to be the most relevant for predicion

#### **Explanations**



"AI predicted that patient X can safely stop treatment with confidence score of 0.8. Why? Can I trust it?"



"AI did a code review on my pull request and rejected it. Why? What should I change to get it merged?"



"AI denied loan to applicant A while approved it for applicant B although their profiles look similar. Why? Can I trust it?"

#### Regulations

- B. Goodman and S. Flaxman. EU regulations on algorithmic decision-making and a 'right to explanation'. In Proc. ICML Workshop Human Interp. Mach. Learn., pages 26–30, New York, NY, June 2016
- D. B. Pasternak. Illinois and City of Chicago poised to implement new laws addressing changes in the workplace — signs of things to come? The National Law Review, June 2019
- A. D. Selbst and J. Powles. Meaningful information and the right to explanation. Int. Data Privacy Law, 7(4):233– 242, Nov. 2017
- K. R. Varshney. Trustworthy machine learning and artificial intelligence. ACM XRDS Mag., 25(3):26–29, Spring 2019

- Articles 13 and 14 state that a data subject has the right to "meaningful information about the logic involved"
- Recital 71 states more clearly that a person who has been subject to automated decision-making "should be subject to suitable safeguards" which should include
  - specific information to the data subject
  - the right to obtain human intervention to express his or her point of view
  - to obtain an explanation of the decision reached after such assessment
  - and to challenge the decision

#### General Data Protection Regulation (GDPR)

#### Explainable Al

- Tools and techniques for humans to
  - Understand rationale behind AI systems' predictions
  - Establish trust in AI systems involved in making decisions
- In a nutshell, we want to open the ML black box and make it interpretable other than accurate

#### Taxonomy

Features VS Samples

Local VS Global

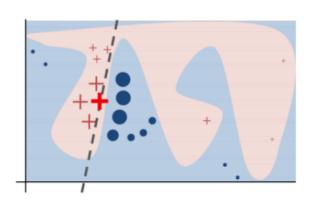
Static VS Interactive

Directly interpretable VS Post-hoc

Surrogate VS Visualisation

Black Box VS White Box

#### Explanations via features







(a) Husky classified as wolf

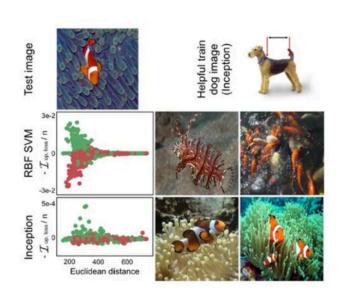
(b) Explanation

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin.
 "Why should i trust you?: Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2016.

#### Features VS Samples

#### Explanations via samples

- "What would happen if a given training point was not available?"
- "What would happen if we would change a training point values of a small amount?"
- The influence function is a measure of how strongly the model parameters or predictions depend on a training instance without retraining the whole model
- Koh, Pang Wei, and Percy Liang.
   "Understanding black-box predictions via influence functions." Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017.



#### Features VS Samples

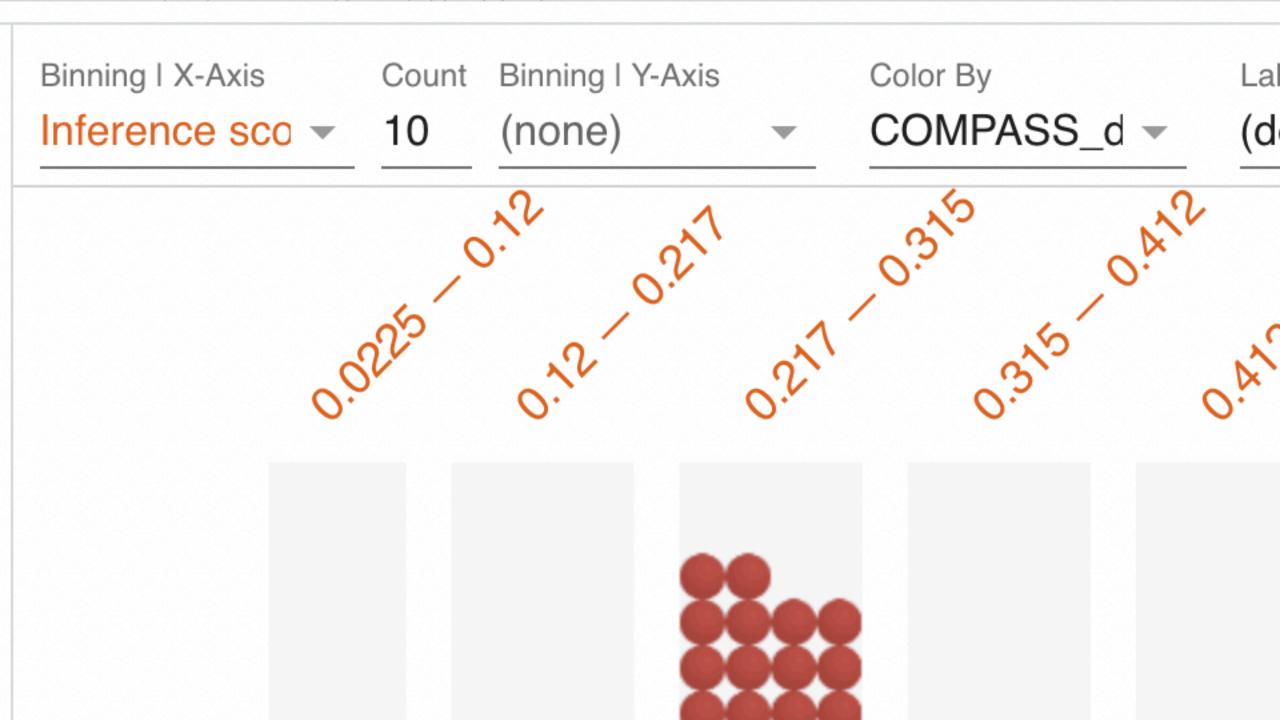
#### Local VS Global





**Local:** For describing the behaviour of a single prediction

**Global:** For describing the behaviour of the entire model



#### Directly interpretable VS post-hoc



**Directly interpretable:** By its intrinsic transparent nature the explanation is understandable by most consumers (e.g. a small decision tree)



**Post-hoc:** The explanation involves an auxiliary method to explain a model after it has been trained



**Surrogate.** A second, usually directly interpretable, model that approximates a more complex (and less interpretable) one, e.g., a regression model



**Visualisation.** A focus on parts of a model that are more easily understandable, e.g., deep dream

### Surrogate VS Visualisation

#### Feature Visualization by Optimization

Different optimization objectives show what different parts of a network are looking for.

- n layer index
- x,y spatial position
- z channel index
- k class index









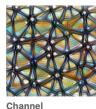




Neuron

 $layer_n[x,y,z]$ 













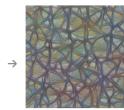
**Class Probability** softmax[k]

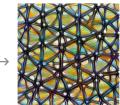
Starting from random noise, we optimize an image to activate a particular neuron (layer mixed4a, unit 11).





Step 4





Step 48

#### Black Box vs White Box

Black-box methods come with a model-agnostic interface, e.g., by perturbing input data White-box rely on the internal mechanisms of the model, e.g., by backpropagating the contributions of all neurons in the network to every feature of the input.

## Other categories

- Conterfactual explanations
- Causal explanations
- Explanations aggregators
- ...

#### A new dimension

We introduce task-specific techniques, as opposite to previous (task-agnostic) techniques

Such category is inspired from specific <u>data</u> <u>integration</u> task, where the nature of the problem makes previous techniques ineffective

## Rapid zoom to our specific task

#### Data Integration

We aim at providing a unified view over data

We get data from multiple, autonomous, sources

e.g., in the domain of e-commerce, we have alibaba, amazon, etc

We produce a holistic data structure for supporting advanced taks

e.g., question answering, search,

#### Data integration pipeline



## ENTITY RESOLUTION (ER)

#### Problem definition:

 $s_1$ 

 $\mathbf{r}_1$ 

 $\mathbf{r}_2$ 

 $\mathbf{r}_{\mathbf{n}}$ 

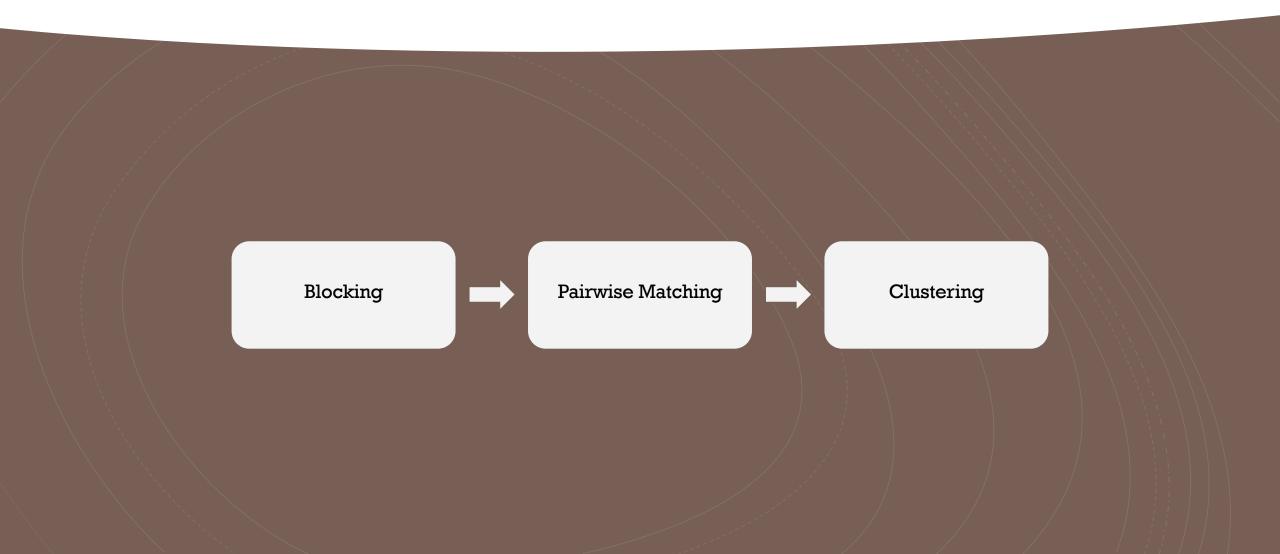
 $\mathbf{a}_1$ 

Consider a set of data sources S, providing a set of records R over a set of attributes A. Entity Resolution computes a partitioning P of R, such that each partition in P identifies the records in R that refer to a distinct entity.

| Products |         |            |              |              |  |  |
|----------|---------|------------|--------------|--------------|--|--|
| Brand    | Model   | Resolution | Digital Zoom | Optical Zoom |  |  |
| Sony     | Alpha 7 | 16mpx      | 16x          | 8x           |  |  |
| Sony     | ILCE 7  | 16.0 MP    | 16x          | 8x           |  |  |
|          |         |            |              |              |  |  |
| Sony     | Alpha 5 | 8.0 MP     | 8x           | 4x           |  |  |

 $a_4$ 

#### Entity resolution pipeline



#### Short history of ER solutions

#### example techniques

|          |                             | Blocking      | Pair Matching        | Clustering     |
|----------|-----------------------------|---------------|----------------------|----------------|
| approach |                             |               |                      |                |
| ~1970    | Rules & Stats               | same name     | string<br>similarity | trans. closure |
| ~2000    | Supervised / Unsup Learning |               | decision trees       | corr. clust.   |
| ~2015    | Supervised Learning         | active learn. | random<br>forests    |                |
| ~2018    | Deep Learning               | embeddings    | DNNs                 |                |

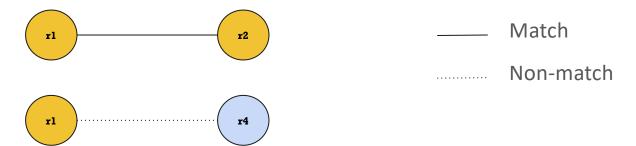
#### Short history of ER solutions

#### example techniques

|       |                             | Blocking      | Pair Matching        | Clustering     |
|-------|-----------------------------|---------------|----------------------|----------------|
| ~1970 | Rules & Stats               | same name     | string<br>similarity | trans. closure |
| ~2000 | Supervised / Unsup Learning |               | decision trees       | corr. clust.   |
| ~2015 | Supervised Learning         | active learn. | random<br>forests    |                |
| ~2018 | Deep Learning               | embeddings    | DNNs                 |                |

ER: PAIRWISE MATCHING

Basic step of ER: compares a *pairs of records* and makes a local decision of whether or not they refer to the same entity.



#### DEEP LEARNING FOR ENTITY RESOLUTION

- Two main systems:
  - DeepMatcher, a modular architecture for record linkage
  - DeepER, a specific architecture for record linkage and a blocking system

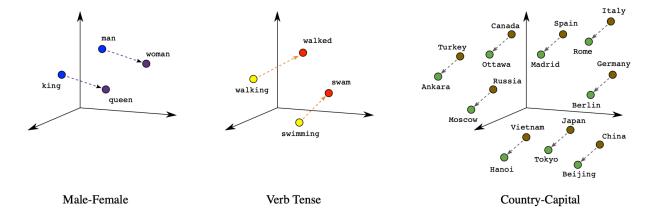
#### **KEY CONCEPTS**

Use pre-trained word-embedding models to represent tokens in the dataset, such as Glove, FastText or Word2vec

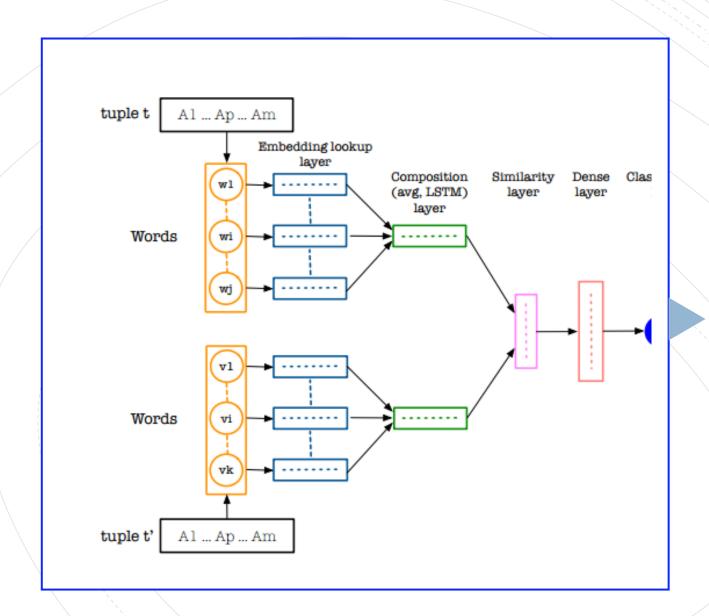
Reuse well known techniques for NLP processing, such as **RNN** or **LSTM**, to summarize attribute tokens

Exploit the ability of deep learning to approximate very complex functions

#### Word Embedding



- Collective name for a set of language modeling and feature learning techniques in natural language processing (NLP)
- Words or phrases from the vocabulary are mapped to vectors of real numbers, keeping the semantic



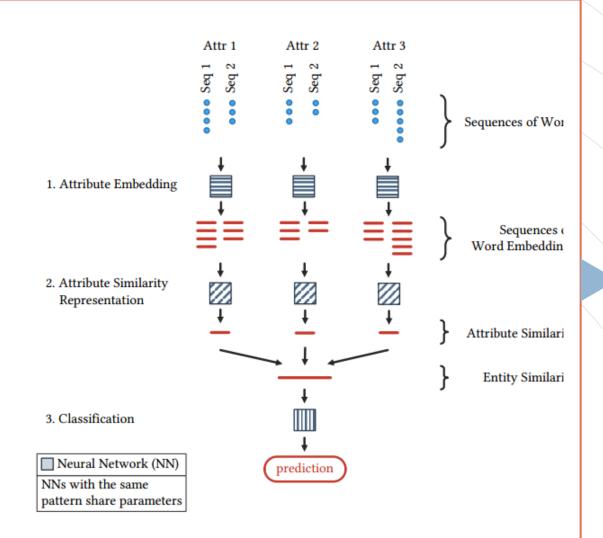
#### DEEPER ARCHITECTURE

- In DeepER the negative training samples (pair of non-matching records) are built in the following way:
  - Let S1 and S2 the two sources of records
  - Take random pairs from \$1,\$2 and evaluate their similarity with common string similarity functions, such as Levenshtein, Jaro-Winkler, Jaccard etc..
  - If the similarity of a pair is under a threshold T the pair is considered a negative sample
- This technique allows to increase dramatically the performances (in terms of F1-score)

# NEGATIVE SAMPLES BUILDING IN DEEPER

#### BLOCKING FUNCTION

- Once the model is trained, the output of the
   LSTM layer can be used to do blocking
- Let v1 and v2 two input records and let v1' and v2' the representations of v1 and v2 from the LSTM output
- Given a generic hash function h the assumption is that h(v1') = h(v2') if v1 and v2 refer to the same entity



#### DEEPMATCHER ARCHITECTURE

(https://github.com/anhaidgroup/deepmatcher)

# DEEPMATCHER MAIN FEATURES

- Different component for each attribute of the dataset
- 4 different ways of attribute summarization (
   SIF, RNN, Attention and Hybrid)
- Custom classification and attribute comparison layers
- Not-trainable embedding layer, with the possibility to choose pre-trained model ( FastText or Glove)

# Opacity of Pair-Matching Models





Amazon

|   | Album    | Artist   | Copyright                                   | Genre                                   | Price           | Date       | Song Name                        | Time |
|---|----------|----------|---------------------------------------------|-----------------------------------------|-----------------|------------|----------------------------------|------|
|   | Flo Rida | Flo Rida | Atlantic<br>Recording                       | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.79         | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |
| ı | Flo Rida | Flo Rida | 2008 Atlantic Recording Corporation for the | Hip-Hop & Rap                           | 1.9 <b>US</b> D | 03/17/2008 | Elevator                         | 3:55 |

model: DeepMatcher

# Opacity of Pair-Matching Models





| ITunes |  |
|--------|--|

|   | Album    | Artist   | Copyright                                   | Genre                                   | Price   | Date       | Song Name                        | Time |
|---|----------|----------|---------------------------------------------|-----------------------------------------|---------|------------|----------------------------------|------|
|   | Flo Rida | Flo Rida | Atlantic<br>Recording                       | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.79 | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |
| ı | Flo Rida | Flo Rida | 2008 Atlantic Recording Corporation for the | Hip-Hop & Rap                           | 1.9 USD | 03/17/2008 | Elevator                         | 3:55 |

ITunes

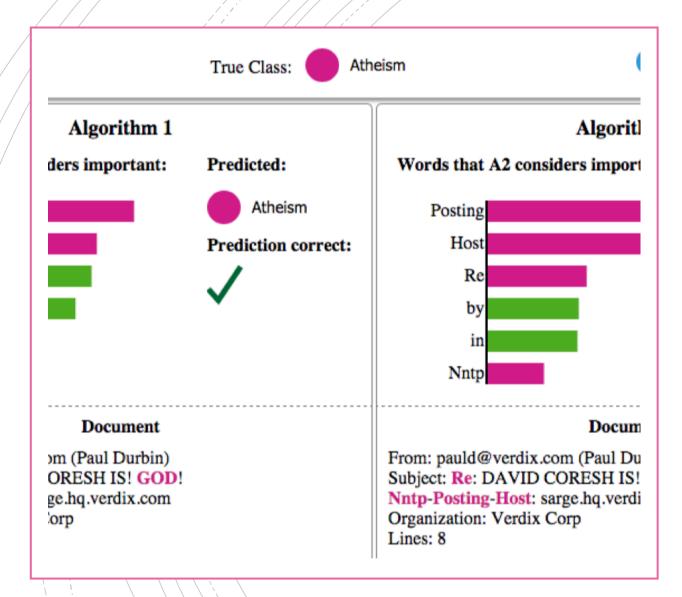
| Album    | Artist          | Copyright                                            | Genre                                   | Price   | Date       | Song Name                        | Time |
|----------|-----------------|------------------------------------------------------|-----------------------------------------|---------|------------|----------------------------------|------|
| Flo Rida | <u>Flo Rida</u> | Atlantic<br>Recording                                | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.79 | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |
| Flo Rida | <u>Flo Rida</u> | 2008 Atlantic<br>Recording<br>Corporation for<br>the | Нір-Нор & Кар                           | 1.9 USD | 03/17/2008 | Elevator                         | 3:55 |

ITunes

| Album    | Artist                         | Copyright                                   | Genre                                   | Price   | Date /     | Song Name                        | Time |
|----------|--------------------------------|---------------------------------------------|-----------------------------------------|---------|------------|----------------------------------|------|
| Flo Rida | da Flo Rida Atlantic Recording |                                             | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.79 | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |
| Flo Rida | Flo Rida                       | 2008 Atlantic Recording Corporation for the | Hip-Hop & Rap                           | 1.9 USD | 03/17/2008 | <u>Elevator</u>                  | 3:55 |

|        | Album           | Artist   | Copyright                                   | Genre                                   | Price   | Date       | Song Name                        | Time |
|--------|-----------------|----------|---------------------------------------------|-----------------------------------------|---------|------------|----------------------------------|------|
| ITunes | <u>Flo Rida</u> | Flo Rida | Atlantic<br>Recording                       | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.79 | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |
| Amazon | <u>Flo Rida</u> | Flo Rida | 2008 Atlantic Recording Corporation for the | Hip-Hop & Rap                           | 1.9 USD | 03/17/2008 | Elevator                         | 3:55 |

| /      |          |          |                                                      |                                         |                 |            |                                  |      |  |  |
|--------|----------|----------|------------------------------------------------------|-----------------------------------------|-----------------|------------|----------------------------------|------|--|--|
|        | Album    | Artist   | Copyright                                            | Genre                                   | Price           | Date /     | Song Name                        | Time |  |  |
| ITunes | Flo Rica | Flo Rida | Atlantic<br>Recording                                | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.79         | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |  |  |
| Amazon | Flo Rida | Flo Rida | 2008 Atlantic<br>Recording<br>Corporation for<br>the | Нір-Нор & Кар                           | 1.9 <b>US</b> D | 03/17/2008 | Elevator                         | 3:55 |  |  |
|        |          |          |                                                      |                                         |                 |            |                                  |      |  |  |



# Popular Model-Agnostic Explanation Tool: LIME

- LIME is a framework for explaining individual predictions of black-box models
- ← "Christianity" or "Atheism"

Given a prediction, it considers an interpretable feature space, e.g. its tokens.

| GOD | Mean | Anyone | This | Koresh | through |
|-----|------|--------|------|--------|---------|
| 1   | 1    | 1      | 1    | 1      | 1       |

Class = «Christianity»

It makes random perturbations, for instance by dropping tokens.

| GOD | Mean | Anyone | This | Koresh | through |
|-----|------|--------|------|--------|---------|
| 1   | 0    | 1      | 0    | 1      | 1       |

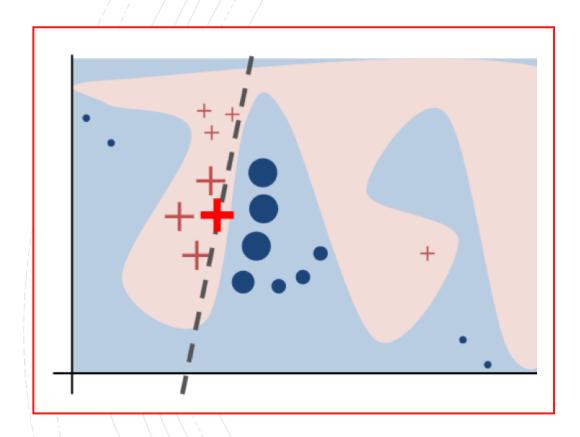
Class = «Christianity»

And tracks how the prediction changes om perturbations, for instance by dropping tokens

| GOD | Mean | Anyone | This | Koresh | through |
|-----|------|--------|------|--------|---------|
| 0   | 1    | 1      | 1    | 1      | 1       |

Class = **Atheist** 

# Surrogate model



- Finally, it learns an surrogate interpretable model of the perturbed instances predictions,
   e.g. a linear regression model
- The interpretable model is not faithful globally, but locally can give accurate influence scores of each feature, e.g., tokens

# Relevance scores

| GOD | Mean | Anyone | This | Koresh | through |
|-----|------|--------|------|--------|---------|
| 0.3 | 0.02 | 0.1    | 0.14 | 0.16   | 0.07    |

# Can we use LIME to explain ER predictions?





|   | Album    | Artist   | Copyright                                   | Genre                                   | Price           | Date       | Song Name                        | Time |
|---|----------|----------|---------------------------------------------|-----------------------------------------|-----------------|------------|----------------------------------|------|
|   | Flo Rida | Flo Rida | Atlantic<br>Recording                       | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.79         | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |
| ı | Flo Rida | Flo Rida | 2008 Atlantic Recording Corporation for the | Hip-Hop & Rap                           | 1.9 <b>US</b> D | 03/17/2008 | Elevator                         | 3:55 |

# Mojito = LIME for ER

Classification Instance = Pair of Records

| ITunes | Flo Rida | Flo Rida | Atlantic<br>Recording                       | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.79 | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |
|--------|----------|----------|---------------------------------------------|-----------------------------------------|---------|------------|----------------------------------|------|
| Amazon | Flo Rida | Flo Rida | 2008 Atlantic Recording Corporation for the | Hip-Hop & Rap                           | 1.9 USD | 03/17/2008 | Elevator                         | 3:55 |

# Mojito = LIME for ER

Specifically, a bag of the original left and right tokens, with a prefix

| ITunes=L | <b>Lalbum</b> _Flo <b>Lalbum</b> _Rida | Lartist_Flo<br>Lartist_Rida | Lcopyright_Atlantic Lcopyright_Recording                 | <b>Lprice_</b> \$<br><b>Lprice_</b> 1.79 | <b>Ldate</b> _17-<br>mar-08  | Ltitle_Elevator (Ltitle_feat . Ltitle_Timbaland) | <b>Ltime</b> _3:55 |
|----------|----------------------------------------|-----------------------------|----------------------------------------------------------|------------------------------------------|------------------------------|--------------------------------------------------|--------------------|
| Amazon=R | Ralbum_Flo<br>Ralbum_Rida              | Rartist_Flo Rartist_Rida    | Rcopyright_2008 Rcopyright_Atlantic Rcopyright_Recording | Rprice_1.9<br>Rprice_USD                 | <b>Rdate</b> _03/17<br>/2008 | <b>Rtitle</b> _Elevator                          | <b>Rtime_</b> 3:55 |

# Mojito = LIME for ER

 Behind the scenes, the prefix gives us the ability to perform document perturbations that make more sense for the ER task

Lalbum\_Flo Lalbum\_Rida Lartist\_Flo Lartist\_Rida Lcopyright\_Atlantic Lcopyright\_Recording Lprice\_\$ Lprice\_1.79 Ldate\_17-mar-08 Ltitle\_Elevator (Ltitle\_feat . Ltitle\_Timbaland ) Ltime\_3:55 Ralbum\_Flo Ralbum\_Rida Rartist\_Flo Rartist\_Rida Rcopyright\_2008 Rcopyright\_Atlantic Rcopyright\_Recording ... Rprice\_1.9 Rprice\_USD Rdate\_03/17/2008 Rtitle\_Elevator Rtime\_3:55 ....

# Mojito's perturbations primitives

- In addition, Mojito extends LIME with a new set of perturbation primitives
  - A variant of the original DROP primitive
  - A new COPY primitive

|   | Album    | Artist   | Copyright                                   | Genre                                   | Price   | Date       | Song Name                        | Time |
|---|----------|----------|---------------------------------------------|-----------------------------------------|---------|------------|----------------------------------|------|
|   | Flo Rida | Flo Rida | Atlantic<br>Recording                       | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.79 | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |
| ı | Flo Rida | Flo Rida | 2008 Atlantic Recording Corporation for the | Hip-Hop & Rap                           | 1.9 USD | 03/17/2008 | Elevator                         | 3:55 |

ITunes

#### DROP

- The DROP primitive typically DECREASES similarity
- E.g., Remove one token from a matching attribute

|   | Album    | Artist   | Copyright                                   | Genre                                   | Price   | Date       | Song Name                        | Time |
|---|----------|----------|---------------------------------------------|-----------------------------------------|---------|------------|----------------------------------|------|
|   | Flo Rida | Flo      | Atlantic<br>Recording                       | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.79 | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |
| n | Flo Rida | Flo Rida | 2008 Atlantic Recording Corporation for the | Нір-Нор & Кар                           | 1.9 USD | 03/17/2008 | Elevator                         | 3:55 |

ITunes

#### DROP

- The DROP primitive typically DECREASES similarity
- E.g., Remove an attribute entirely from one of the records

|    | Album    | Artist   | Copyright                                   | Genre                                   | Price   | Date       | Song Name                        | Time |
|----|----------|----------|---------------------------------------------|-----------------------------------------|---------|------------|----------------------------------|------|
| es | Flo Rida | Flo Rida | Atlantic<br>Recording                       | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.79 | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |
| on | Flo Rida | Flo Rida | 2008 Atlantic Recording Corporation for the | Hip-Hop & Rap                           |         | 03/17/2008 | Elevator                         | 3:55 |

ITunes

#### Discussion

- The DROP primitive can also INCREASE similarity
- E.g., Remove a non-matching attribute from both

**ITunes** 

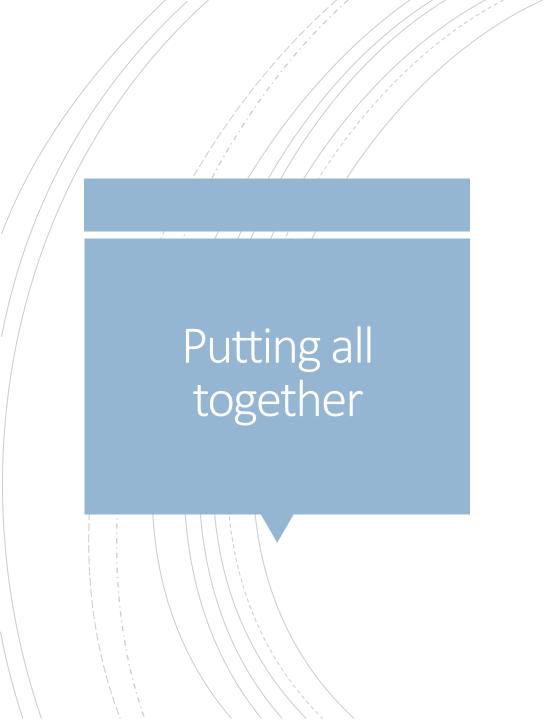
|   | Album    | Artist   | Copyright                                   | Genre                                   | Price | Date       | Song Name                        | Time |
|---|----------|----------|---------------------------------------------|-----------------------------------------|-------|------------|----------------------------------|------|
|   | Flo Rida | Flo Rida | Atlantic<br>Recording                       | Hip-Hop/Rap ,<br>Music , Dirty<br>South |       | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |
| n | Flo Rida | Flo Rida | 2008 Atlantic Recording Corporation for the | Hip-Hop & Rap                           |       | 03/17/2008 | Elevator                         | 3:55 |

#### **COPY**

- The COPY primitive always INCREASES similarity
- That is, making two attributes matching or more similar
- Specific for the ER task

|     | Album    | Artist   | Copyright                                   | Genre                                 | Price   | Date       | Song Name                        | Time |
|-----|----------|----------|---------------------------------------------|---------------------------------------|---------|------------|----------------------------------|------|
| es  | Flo Rida | Flo Rida | Atlantic<br>Recording                       | Hip-Hop/Rap,<br>Music, Dirty<br>South | \$ 1.79 | 17-mar-08  | Elevator ( feat .<br>Timbaland ) | 3:55 |
| zon | Flo Rida | Flo Rida | 2008 Atlantic Recording Corporation for the | Hip-Hop & Rap , Music , Dirty South   | 1.9 USD | 03/17/2008 | Elevator                         | 3:55 |

ITunes



Mojito considers all the pairs of records in the test set

Applies random DROP/COPY perturbations using the LIME engine

Collects all the influence scores returned by LIME

Returns both

We demonstrate Mojito on two datasets: (1) SONGS and (2) BEERS aggregate scores of ATTRIBUTE

aggregate scores of TOKEN for each attribute

#### Time

Song Name

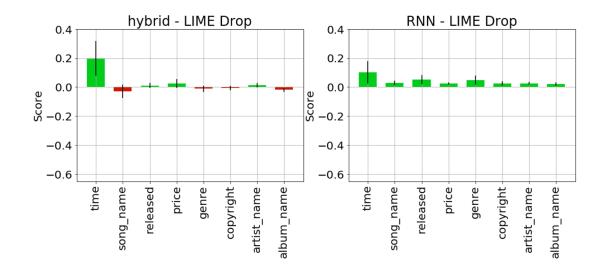
Date

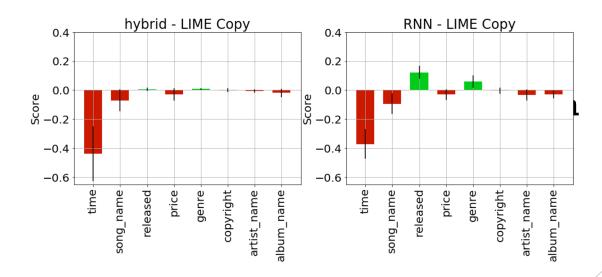
Price

Genre

Copyright

Artist Album





## Manual Check: Non-Match to Match

• Take a non-matching pair



|   | Album    | Artist   | Copyright                                   | Genre                                   | Price   | Date      | Song Name                        | Time |
|---|----------|----------|---------------------------------------------|-----------------------------------------|---------|-----------|----------------------------------|------|
|   | Flo Rida | Flo Rida | 2008 Atlantic Recording Corporation for the | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.99 | 17-mar-08 | Elevator ( feat .<br>Timbaland ) | 3:55 |
| l | *        | *        | *                                           | *                                       | *       | *         | *                                | *    |

#### Manual Check: Non-Match to Match

• Set TIME to the same (or close) value and it becomes a match



| ITunes |
|--------|
|--------|

|   | Album    | Artist   | Copyright                                   | Genre                                   | Price   | Date      | Song Name                        | Time |
|---|----------|----------|---------------------------------------------|-----------------------------------------|---------|-----------|----------------------------------|------|
|   | Flo Rida | Flo Rida | 2008 Atlantic Recording Corporation for the | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.99 | 17-mar-08 | Elevator ( feat .<br>Timbaland ) | 3:55 |
| Ĺ | *        | *        | *                                           | *                                       | *       | *         | *                                | 3:55 |

#### Observations

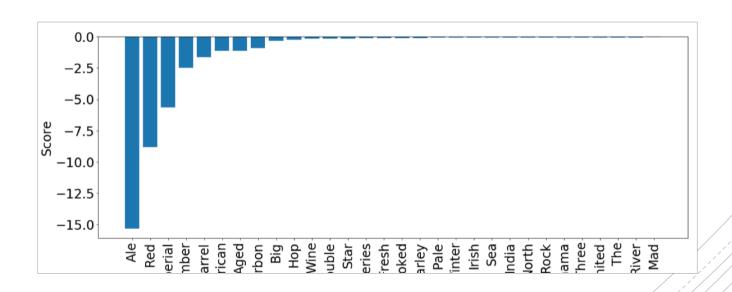
 Most matching pairs in the training set have same time



|   | Album    | Artist   | Copyright                                   | Genre                                   | Price   | Date      | Song Name                        | Time |
|---|----------|----------|---------------------------------------------|-----------------------------------------|---------|-----------|----------------------------------|------|
|   | Flo Rida | Flo Rida | 2008 Atlantic Recording Corporation for the | Hip-Hop/Rap ,<br>Music , Dirty<br>South | \$ 1.99 | 17-mar-08 | Elevator ( feat .<br>Timbaland ) | 3:55 |
| ı | *        | *        | *                                           | *                                       | *       | *         | *                                | 3:55 |

# Mojito's tokenlevel scores for Beer Name

Imperial red ale on the top



#### Manual Check: Match to Non-Match

• Take a matching pair



| ABV   | Beer Name                         | Brewery                    | St <del>y</del> le       |
|-------|-----------------------------------|----------------------------|--------------------------|
| 5.60% | Sanibel Red Island Ale            | Point Ybel Brewing Company | American Amber / Red Ale |
| 5.60% | Point Ybel Sanibel Red Island Ale | Point Ybel Brewing Company | Irish Ale                |

#### Manual Check: Match to Non-Match

• Make "Imperial Red Ale" appear in the Beer Name and it becomes a non-match



| ABV   | Beer Name                                       | Brewery                    | Style                    |  |
|-------|-------------------------------------------------|----------------------------|--------------------------|--|
| 5.60% | Sanibel Red Island Imperial Red Ale             | Point Ybel Brewing Company | American Amber / Red Ale |  |
| 5.60% | Point Ybel Sanibel Red Island  Imperial Red Ale | Point Ybel Brewing Company | Irish Ale                |  |

## Manual Check: Non-Match to Match

• Take a non-matching pair involving two Imperial Red Ales



| ABV    | Beer Name                   | Brewery             | Style                    |
|--------|-----------------------------|---------------------|--------------------------|
| 9.00 % | Hop Around Imperial Red Ale | Big Bay Brewing Co. | American Amber / Red Ale |
| 9.00 % | Marble Imperial Red Ale     | Marble Brewery      | American Strong Ale      |

#### Manual Check: Non-Match to Match

 Remove "Imperial Red Ale" from the Beer Name and it becomes a match



Even though they still look very different

| ABV Beer Name |                                    | Brewery             | Style                    |
|---------------|------------------------------------|---------------------|--------------------------|
| 9.00 %        | нор Around <b>Imperial Red</b> Ale | Big Bay Brewing Co. | American Amber / Red Ale |
| 9.00 %        | Marble Imperial Red Ale            | Marble Brewery      | American Strong Ale      |

#### Observations

 Most non-matching pairs in the training set involve Imperial Red Ales



| ABV    | Beer Name                   | Brewery             | Style                    |  |
|--------|-----------------------------|---------------------|--------------------------|--|
| 9.00 % | Hop Around Imperial Red Ale | Big Bay Brewing Co. | American Amber / Red Ale |  |
| 9.00 % | Marble Imperial Red Ale     | Marble Brewery      | American Strong Ale      |  |

## Conclusions

#### Explainable AI is an exciting field

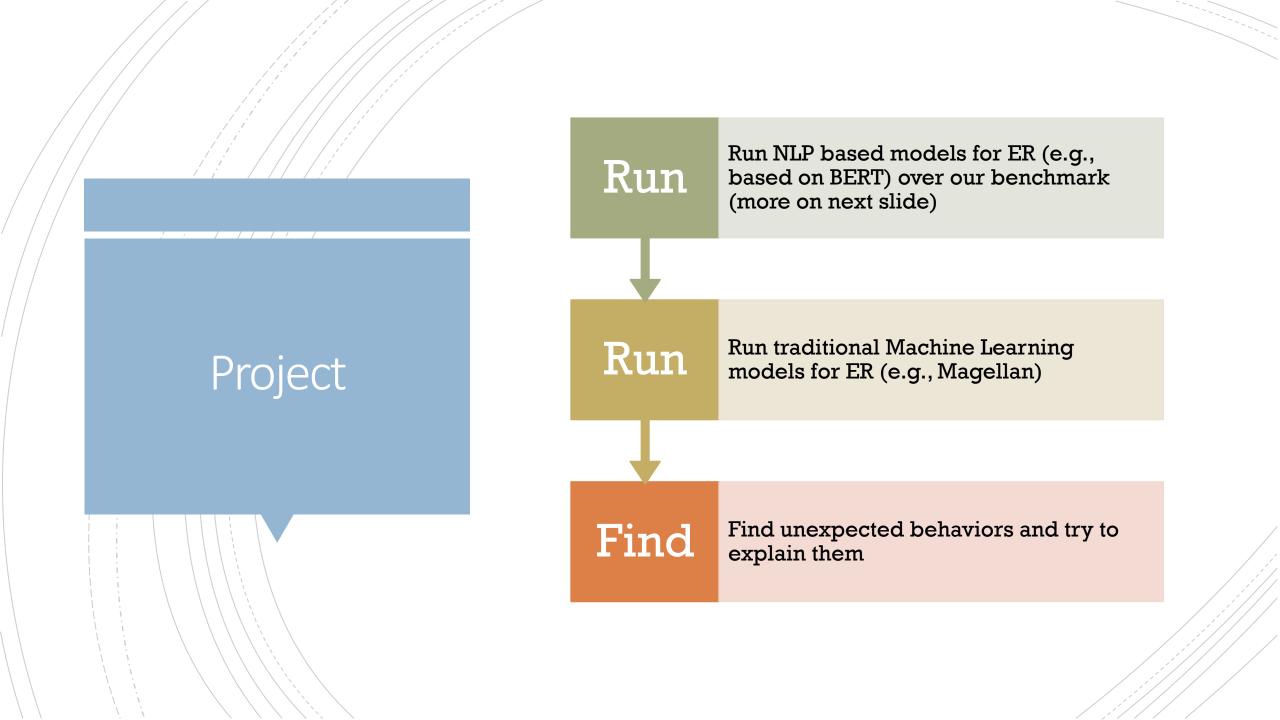
Many opaque data integration models that need to be equipped with explainable tools

Mojito is an extension of LIME for the specific ER tas

#### It builds on two main intuitions

- represents pairs of records as a single document, in order to leverage the LIME framework
- plugs in ER specific perturbations

Explanations can be used to «debug» the model



#### **ALASKA BENCHMARK**



End-to-end benchmark for Big Data Integration tasks based on real-world product specification

```
r<sub>n</sub>

...

r<sub>1</sub>

{
    "page title": "Canon Rebel T2 on
    ebay.com"
    "brand": "Canon",
    "model": "T2",
    "megapixel": "18 mpx",
    "optical zoom": "5x"
}
```

#### **Available datasets:**

| Dataset | # data<br>sources | # records | # distinct attributes |
|---------|-------------------|-----------|-----------------------|
| CAMERA  | 24                | ~30k      | ~4k                   |
| MONITOR | 26                | ~16k      | ~2k                   |

#### Credits



Tommaso Teofili
PhD Student
(Explaination taxonomy)



Andrea De Angelis, Research (DI pipeline & Alaska)



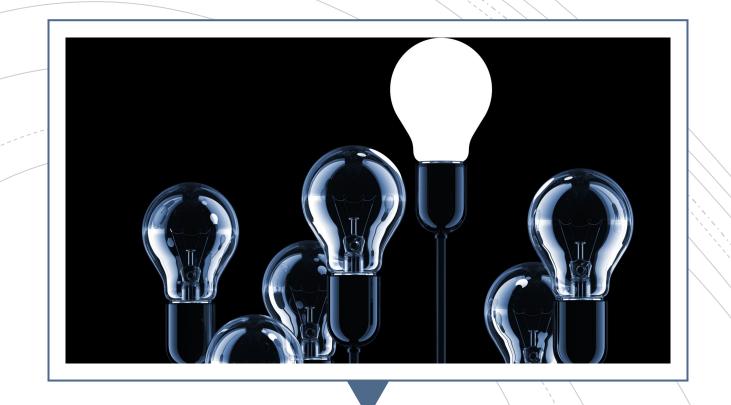
Vincenzo Martello (ER models)



Vincenzo di Cicco (Mojito)

- 1. Doshi-Velez, Finale, and Been Kim. "Towards a rigorous science of interpretable machine learning." arXiv preprint arXiv:1702.08608 (2017)
- Arya, Vijay, et al. "One Explanation Does Not Fit All: A Toolkit and Taxonomy of Al Explainability Techniques." arXiv preprint arXiv:1909.03012 (2019).
- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.
- 4. Koh, Pang Wei, and Percy Liang. "Understanding black-box predictions via influence functions." *Proceedings of the 34th International Conference on Machine Learning-Volume 70*. [MLR. org, 2017.
- 5. Wexler, James, et al. "The What-If Tool: Interactive Probing of Machine Learning Models." IEEE transactions on visualization and computer graphics (2019).
- Dong, Xin Luna, and Theodoros Rekatsinas. "Data integration and machine learning: A natural synergy." *Proceedings of the 2018 International Conference on Management of Data.* 2018.
- 7. Ebraheem, Muhammad, et al. "DeepER--Deep Entity Resolution." arXiv preprint arXiv:1710.00597 (2017).
- 8. Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., Krishnan, G., ... & Raghavendra, V. (2018, May). Deep learning for entity matching: A design space exploration. In *Proceedings of the 2018 International Conference on Management of Data* (pp. 19-34).
- 9. Di Cicco, Vincenzo, et al. "Interpreting deep learning models for entity resolution: an experience report using LIME." Proceedings of the Second International Workshop on Exploiting Artificial Intelligence Techniques for Data Management. 2019.
- Gryz, Jarek, and Nima Shahbazi. "Futility of a Right to Explanation." PIE Workshop @ EDBT/ICDT 2020

# References



Thanks for your attention