
Riccardo Torlone
Università Roma Tre

NoSQL systems:
Implementation

CREDITS: Jimmy Lin (University of Maryland)

Key-Value Database

2

� A simple hash table accessible only through its primary key
� Basically a table with two columns: ID and VALUE
� The value is a blob that the system just stores: it can be text, JSON,

XML, and anything else.
� Operations:

� get the value for the key
� put a value for a key (if the key already exists the corresponding value is

overwritten)
� delete a key from the data store.

CREDITS: Jimmy Lin (University of Maryland)

Popular key-value databases

3

� Redis (often referred to as Data Structure server) [http://redis.io/]: it
is more general since it supports storing lists, sets, hashes and can do
range, diff, union, and intersection operations,

� Riak [http://basho.com/riak/],
� Amazon DynamoDB (not open-source)

[https://aws.amazon.com/dynamodb/],
� Microsoft Azure Cosmos DB

[https://azure.microsoft.com/services/cosmos-db]
� Memcached DB and its flavors [http://memcached.org/],
� Hazelcast (in-memory database) [https://hazelcast.com/],
� Oracle NoSQL (not open-source)

[http://www.oracle.com/technetwork/database/database-
technologies/nosqldb/]

CREDITS: Jimmy Lin (University of Maryland)

Riak

4

� Store keys into buckets, which are just a way to group the keys

� Usually, one bucket store aggregates of the same type (domain buckets)
� Different types of aggregates can be stored in the same bucket

CREDITS: Jimmy Lin (University of Maryland)

Consistency in Key-Value Databases

5

� Peer-to-peer architecture.
� Consistency applicable only for operations on a single key (get,

put, delete).
� Optimistic writes can be performed
� Eventually consistent model in distributed implementations
� Riak has two ways of resolving update conflicts

� the newest write wins and older writes loose
� both values are returned allowing the client to resolve the conflict.

CREDITS: Jimmy Lin (University of Maryland)

Consistency set up in Riak

6

� During the bucket creation

� w=nVal: data in every node must be consistent
� But it decreases the write performance of the cluster

� allowSiblings(false): last write wins.

CREDITS: Jimmy Lin (University of Maryland)

Transactions

7

� Different products have different specifications of transactions
� Generally speaking, there are no guarantees on the writes
� Riak uses the concept of quorum

� set of the w and r values during the write API call

� n = 5 (replication factor), w =3, r =2 : the write is successful only
when it is written on at least three nodes, the read is successful only
when it is read on at least two nodes

� the cluster can tolerate n - w = 2 nodes being down for writes
� r+w>n guarantees a correct read

CREDITS: Jimmy Lin (University of Maryland)

Query Features

8

� Only query by the key!
� It is not possible to use some attribute of the value column
� What if we don’t know the key?

� Some system allow the search inside the value (e.g., Riak Search)
� The key needs to be suitably chosen (e.g., session ID for storing

session data)

CREDITS: Jimmy Lin (University of Maryland)

CRUD operations in Riak

9

Bucket bucket = getBucket(bucketName);
IRiakObject riakObject = bucket.store(key, value).execute();

Bucket bucket = getBucket(bucketName);
IRiakObject riakObject = bucket.fetch(key).execute();
byte[] result = riakObject.getValue();
String value = new String(result);

Riak provides an HTTP-based interface: all operations can also be
performed from the Web browser or on the command line using
cURL (a command line tool for doing all sorts of URL manipulations
and transfers)

CREDITS: Jimmy Lin (University of Maryland)

Sharding

10

� The value of the key determines on which node the key is stored
� Settings in Riak:

� n (number of nodes to store the key-value replicas),
� r (number of nodes to read before a read is considered successful),
� w (number of nodes to write before a write is considered successful).
� These settings allow us to fine-tune node failures for reads or writes.
� They can be set as defaults during bucket creation.
� Rule of quorums: r+w>n

CREDITS: Jimmy Lin (University of Maryland)

Suitable Use Cases

11

� Storing Session Information
� Using the sessionId as key.

� User Profiles, Preferences
� Using the userId as key.

� Shopping Cart Data
� Using the sessionId or the userId as key.

CREDITS: Jimmy Lin (University of Maryland)

When Not to Use

13

� Relationships among Data
� Multioperation Transactions
� Query by Data
� Operations by Sets

CREDITS: Jimmy Lin (University of Maryland)

Document Databases

15

� The database stores and retrieves documents
� A key-value store where the value is an examinable document
� Documents:

� can be XML, JSON, BSON, and so on
� are self-describing, hierarchical tree data structures
� can consist of scalar values, collections, and maps
� are structurally similar but not identical to each other

CREDITS: Jimmy Lin (University of Maryland)

Documents in a document database

16

{ "firstname": "Martin",
"likes": ["Biking", "Photography"],
"lastVisited":"Boston",

}

{ "firstname": "Pramod",
"citiesvisited": ["Chicago", "London", "Pune", "Bangalore"],
"addresses": [

{ "state": "AK", "city": "DILLINGHAM", "type": "R" },
{ "state": "MH", "city": "PUNE", "type": "R" }

],
"lastcity": "Chicago"

}

CREDITS: Jimmy Lin (University of Maryland)

Document structure

17

� The schema of the data can differ across documents,
� Collection is a set of “similar” documents
� In documents, there are no empty attributes - if a given attribute is

not found, it was not set or not relevant to the document
� New attributes can be created without the need to define them or

to change the existing documents.

CREDITS: Jimmy Lin (University of Maryland)

Popular document databases

18

� MongoDB [http://www.mongodb.org/],
� CouchDB [http://couchdb.apache.org/],
� Couchbase (https://www.couchbase.com/)
� RethinkDB [https://www.rethinkdb.com/],
� RavenDB [http://ravendb.net/],
� Terrastore [https://code.google.com/p/terrastore/],
� OrientDB [http://www.orientechnologies.com/],
� Each product has some features that may not be found in others.

CREDITS: Jimmy Lin (University of Maryland)

MongoDB

19

� Each MongoDB instance has multiple databases
� Similar to a database schema in a RDBMS

� Each database can have multiple collections
� Similar to a table in a RDBMS

� When we store a document, we have to choose which database
and collection this document belongs
db.collection.insert(document)

CREDITS: Jimmy Lin (University of Maryland)

CAP in MongoDB

20

� Master-slave architecture
� A MongoDB database makes use of replica sets for consistency

and availability

CREDITS: Jimmy Lin (University of Maryland)

Replica sets

21

� The replica-set nodes elect the master, or primary, among
themselves nodes
� That closer to the other servers or having more RAM
� Users can affect this by assigning a priority to a node

� All requests go to the master node
� Data is replicated to the slave nodes and the clients can get to the

data even when the primary node is down.
� If the master node goes down, the remaining nodes in the replica

set vote among themselves to elect a new master.
� Using replica sets gives you the ability to have a highly available

document data store.

CREDITS: Jimmy Lin (University of Maryland)

Consistency

22

� You can choose to replicate the writes to all the slaves or a given number of
slaves before it returns as successful
shopping.insert({ item: "envelopes", qty : 100, type: "Clasp" },

{ writeConcern: { w: "majority", wtimeout: 5000 } })
� You can make sure that writes are written to the master and some slaves by

setting WriteConcern to REPLICAS_SAFE (which means at least two):
� For all writes:

DBCollection shopping = database.getCollection("shopping");
shopping.setWriteConcern(REPLICAS_SAFE);

� Individually for each specific write:
WriteResult result = shopping.insert(order, REPLICAS_SAFE);

� You can increase the read performance by allowing reading from slaves by
setting slaveOk
� For all read:

Mongo mongo = new Mongo("localhost:27017");
mongo.slaveOk();

� Individually for each specific read:
DBCollection collection = getOrderCollection();
BasicDBObject query = new BasicDBObject();
query.put("name", "Martin");
DBCursor cursor = collection.find(query).slaveOk();

CREDITS: Jimmy Lin (University of Maryland)

Query Features

24

� Document databases provide different query features.
� CouchDB allows you:

� to specify complex queries (called views) on documents which can be
either materialized or dynamic

� to implement a view via map-reduce

� In general:
� You can query the data inside the document without having to

retrieve the whole document by its key and then introspect the
document.

CREDITS: Jimmy Lin (University of Maryland)

MongoDB query language

25

� Expressed via JSON with simple constructs

// in orders
{
"orderId":99,
"customerId":"883c2c5b4e5b",
"orderDate":”2014-04-23”,
"orderItems":[
{ "product": {"id":27, "name":"NoSQL Distilled"}, "price": 32.45 }
{ "product": {"id":55, "name":"Java 4 all"}, "price": 41.33 }
],
}

db.orders.find()
db.orders.find({"customerId":"883c2c5b4e5b"})
db.order.find({customerId:"883c2c5b4e5b"}, {orderId:1,orderDate:1})
db.orders.find({"orderItems.product.name":/NoSQL/})

CREDITS: Jimmy Lin (University of Maryland)

Scaling for reads in MongoDB

26

� Heavy-read loads can be supported by adding more read slaves

� Once the new node is started, it needs to be added to the replica set
with: rs.add("mongod:27017");

CREDITS: Jimmy Lin (University of Maryland)

Scaling for writes in MongoDB

27

� Achieved by sharding the data
� The data is then split by certain field and moved to different nodes

� Sharding on the first name of the customer:
db.runCommand({shardcollection:"ecommerce.customer",key:{firstname:1}})

CREDITS: Jimmy Lin (University of Maryland)

Suitable Use Cases

28

� Event Logging
� Content Management Systems, Blogging Platforms
� Web Analytics or Real-Time Analytics
� E-Commerce Applications

CREDITS: Jimmy Lin (University of Maryland)

When Not to Use

30

� Complex Transactions Spanning Different Operations
� Queries against Varying Aggregate Structure

CREDITS: Jimmy Lin (University of Maryland)

Column(-Family) Stores

32

� Data with keys mapped to values
� Values grouped into multiple Column families
� Each column family is a collection of name-value pairs
� Column families group related data that is often accessed together

CREDITS: Jimmy Lin (University of Maryland)

Popular column-family stores

33

� Cassandra [http://cassandra.apache.org/],
� HBase [https://hbase.apache.org/],
� Hypertable [http://hypertable.org/],
� BigTable [https://cloud.google.com/bigtable/],
� SimpleDB [https://aws.amazon.com/simpledb/]

CREDITS: Jimmy Lin (University of Maryland)

Cassandra data model

34

� In Cassandra the cluster does not have a master node
� Any read and write can be handled by any node in the cluster

CREDITS: Jimmy Lin (University of Maryland)

Cassandra columns

35

� The basic unit of storage in Cassandra is a column.
� A column is a name-value pair

� The name behaves as the key
� It is always stored with a timestamp

� The timestamp is used to expire data, resolve write conflicts, deal
with stale data, and do other things.
{
name: "fullName",
value: "Martin Fowler",
timestamp: 12345667890

}

CREDITS: Jimmy Lin (University of Maryland)

Cassandra rows

36

� A row is a collection of columns attached or linked to a key
� a collection of similar rows makes a column family
� standard column family: the columns are simple

//column family
{
//row
"pramod-sadalage" : {

firstName: "Pramod",
lastName: "Sadalage",
lastVisit: "2019/12/12"

}
//row
"martin-fowler" : {

firstName: "Martin",
lastName: "Fowler",
location: "Boston"

}
}

CREDITS: Jimmy Lin (University of Maryland)

Super columns

37

� A super column consists of a name and a value which is a map of
columns
{
name: "book:978-0767905923",
value: {
author: "Mitch Albon",
title: "Tuesdays with Morrie",
isbn: "978-0767905923"

}
}

� Cassandra puts the standard and super column families into
keyspaces (databases in RDBMS).

� Keyspaces have to be created so that column families can be
assigned to them:
create keyspace ecommerce

CREDITS: Jimmy Lin (University of Maryland)

Super column family

38

{//row
name: "billing:martin-fowler",
value: {

address: {
name: "address:default", value: {fullName: "Martin Fowler", street:"100 N. Main Street", zip: "20145"}

},
billing: {

name: "billing:default", value: {creditcard: "8888-8888-8888-8888", expDate: "12/2016" }

}
}

{//row
name: "billing:pramod-sadalage",
value: {

address: {
name: "address:default", value: {fullName: "Pramod Sadalage", street:"100 E. State Parkway", zip: "54130"}

},
billing: {

name: "billing:default", value: {creditcard: "9999-8888-7777-4444", expDate: "01/2016« }

}
}

}

CREDITS: Jimmy Lin (University of Maryland)

Consistency in Cassandra

39

� During keyspace (database) creation, the replication factor can be set
� Writes:

� data is recorded in a commit log and written to an in-memory structure
called memtable

� by default, this is sufficient to consider the write successful
� consistency setting = QUORUM: the write must propagate to the majority

of the nodes before it is considered successful
� LWW (last write wins) for resolving write-write conflicts

� Reads:
� consistency setting = ONE (the default): the data from the first replica is

returned even if it is stale.
� consistency setting = QUORUM: majority of the nodes are accessed and the

column with the newest timestamp is returned
� consistency setting = ALL: all nodes will have to respond to reads or writes

CREDITS: Jimmy Lin (University of Maryland)

Transactions and Availability

40

� Cassandra does not have transactions in the traditional sense
� Atomicity at the row level

� There is no master and every node is a peer
� Availability governed by the (R + W) > N formula
� You can tune the availability by changing R and W for a fixed N
� You can add nodes to the cluster to improve the capacity of the

cluster

CREDITS: Jimmy Lin (University of Maryland)

Query Features in Cassandra

41

use ecommerce;
CREATE COLUMN FAMILY Customer
WITH comparator = UTF8Type
AND key_validation_class=UTF8Type
AND column_metadata = [

{column_name: city, validation_class: UTF8Type}
{column_name: name, validation_class: UTF8Type}
{column_name: web, validation_class: UTF8Type}

];
SET Customer['mfowler']['city']='Boston';
SET Customer['mfowler']['name']='Martin Fowler';
SET Customer['mfowler']['web']='www.martinfowler.com';

GET Customer['mfowler'];
GET Customer['mfowler']['web'];

DEL Customer['mfowler']['city'];
DEL Customer['mfowler'];

CREDITS: Jimmy Lin (University of Maryland)

Indexing

42

� You can index columns other than the keys for the column family

UPDATE COLUMN FAMILY Customer
WITH comparator = UTF8Type
AND column_metadata = [{column_name: city,

validation_class: UTF8Type,
index_type: KEYS}];

GET Customer WHERE city = 'Boston';

CREDITS: Jimmy Lin (University of Maryland)

Cassandra Query Language (CQL)

43

� An SQL-like language

CREATE COLUMNFAMILY Customer (
KEY varchar PRIMARY KEY,
name varchar,
city varchar,
web varchar);

INSERT INTO Customer (KEY,name,city,web)
VALUES ('mfowler',

'Martin Fowler',
'Boston',
'www.martinfowler.com');

SELECT * FROM Customer
SELECT name,web FROM Customer
SELECT name,web FROM Customer WHERE city='Boston'

CREDITS: Jimmy Lin (University of Maryland)

Suitable Use Cases

44

� Event Logging
� Content Management Systems, Blogging Platforms
� Analytics

CREDITS: Jimmy Lin (University of Maryland)

When Not to Use

45

� Systems that require ACID transactions for writes and reads.
� You do not want deal with write-write conflicts

CREDITS: Jimmy Lin (University of Maryland)

Polyglot Persistence

48

� Different databases are designed to solve different problems.
� Using a single database engine for all requirements

� storing transactional data,
� caching session information,
� traversing graph of customers,
� performing OLAP operations,
� …

� …usually leads to non-performant solutions.
� Different needs for availability, consistency, or backup

requirements.

CREDITS: Jimmy Lin (University of Maryland)

Traditional approach

49

CREDITS: Jimmy Lin (University of Maryland)

Polyglot Data Store Usages

50

CREDITS: Jimmy Lin (University of Maryland)

Service-oriented Usage

51

CREDITS: Jimmy Lin (University of Maryland)

Expanding for Better Functionality

52

CREDITS: Jimmy Lin (University of Maryland)

Polyglot Persistence in Enterprises

53

� In the world of polyglot persistence, the DBAs will have to become more poly-
skilled
� learn how some of these NoSQL technologies work,
� how to monitor these systems,
� back them up and take data out of and put into these systems.

� Security: the ability to create users and assign privileges to see or not see data at the
database level. Most of the NoSQL databases do not have very robust security
features. The responsibility for the security lies with the application.

� Issues such as licensing, support, tools, upgrades, drivers, auditing, and security
come up.

� Many NoSQL technologies are open-source and have an active community of
supporters; also, there are companies that provide commercial support.

� Tool vendors and the open-source community are releasing tools such as MongoDB
Monitoring Service, Datastax Ops Center, or Rekon browser for Riak.

� ETL tools need to access NoSQL data stores. The ETL tool vendors are including
NoSQL databases: Pentaho can talk to MongoDB and Cassandra.

� Every enterprise runs analytics of some sort. The need to scale for writes are a great
use case for NoSQL databases.

CREDITS: Jimmy Lin (University of Maryland)

Choosing Your Database

54

� The two main reasons to use NoSQL technology are:
� To improve programmer productivity by using a database that better matches

an application’s needs.
� To improve data access performance via some combination of handling larger

data volumes, reducing latency, and improving throughput.
� It’s essential to test expectations about programmer productivity and/or

performance before committing to using a NoSQL technology.
� Service encapsulation supports changing data storage technologies as

needs and technology evolve. Separating parts of applications into
services also allows you to introduce NoSQL into an existing
application.

� Most applications, particularly nonstrategic ones, should stick with
relational technology—at least until the NoSQL ecosystem becomes
more mature.

CREDITS: Jimmy Lin (University of Maryland)

Key points

55

� Polyglot persistence is about using different data storage technologies to
handle varying data storage needs.

� Polyglot persistence can apply across an enterprise or within a single
application.

� Encapsulating data access into services reduces the impact of data storage
choices on other parts of a system.

� Adding more data storage technologies increases complexity in
programming and operations, so the advantages of a good data storage fit
need to be weighed against this complexity.

� NoSQL is just one set of data storage technologies. As they increase
comfort with polyglot persistence, we should consider other data
storage technologies whether or not they bear the NoSQL label.

