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Motivation
� Analysis of data made by both engineering and non-engineering 

people.
� The data are growing fast. 
� Current RDBMS can NOT handle it.
� Traditional solutions are often not scalable, expensive and 

proprietary.
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Motivation
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� Hadoop supports data-intensive distributed applications. 
� But…

� You have to use MapReduce model
� Hard to program 
� Not Reusable
� Error prone

� For complex jobs: multiple stage of MapReduce jobs
� Alternative and more efficient tools exist today (e.g., Spark) but they 

are not easy to use
� Most users know Java/SQL/Bash



Possible solution
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� Make the unstructured data looks like tables regardless how it really lay out
� SQL (standard!) based query can be directly against these tables
� Generate specify execution plan for this query

� A big data management system storing structured data on Hadoop file system
� Provide an easy query these data by executing Hadoop-based plans
� Today just a part of a large category of solutions called “SQL over Hadoop”



What is Hive?
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� An infrastructure built on top of Hadoop for providing data 
summarization, query, and analysis.
� Structure
� Access to different storage
� HiveQL (very close to a subset of SQL)
� Query execution via MapReduce, Tez, and Spark
� Procedural language with HPL-SQL

� Key Building Principles:
� SQL is a familiar language
� Extensibility –Types, Functions, Formats, Scripts
� Performance



Application scenario
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� No real-time queries (high latency)! 
� No row level updates! 
� Not designed for online transaction processing!
� Best use: batch jobs over large sets of append-only data

� Log processing
� Data/Text mining
� Business intelligence
� …

� However: current version allows a form of ACID transaction at the 
row level (one application can add rows while another reads from 
the same partition without interfering with each other).



Architecture
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Data Units
� Databases

� Containers of tables and other data units 
� Tables

� Homogeneous units of data which have the same schema.
� Basic type columns (Int, Float, Boolean)
� Complex type: Lists / Maps / Arrays

� Partitions
� Each Table can have one or more partition columns (or partition keys). 
� Each unique value of the partition keys defines an horizontal partition of the Table. 
� Queries can run on the relevant partition thereby speeding up the analysis 

significantly. 
� Partition columns are virtual columns, they are not part of the data itself 

� Buckets (or Clusters)
� Data in each partition may be divided into Buckets based on the value of a hash 

function of some column of the Table. 
� These can be used to efficiently sample the data
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Type System
� Primitive types

� Integers: TINYINT, SMALLINT, INT, BIGINT
� Boolean: BOOLEAN
� Floating point numbers: FLOAT, DOUBLE 
� String: STRING
� Date string: TIMESTAMP 

� Complex types
� Structs: {a INT; b INT}
� Maps:  M['group']
� Arrays:  ['a', 'b', 'c'], A[1] returns 'b'
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Examples
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CREATE TABLE demo1(
id INT,
name STRING);

CREATE TABLE employees (
name STRING,
salary FLOAT,
subordinates ARRAY<STRING>,
deductions MAP<STRING, FLOAT>,
address STRUCT<street:STRING, city:STRING, 

state:STRING, zip:INT>
);



File formats
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� The hive.default.fileformat configuration parameter determines 
the format to use if it is not specified in a CREATE 
TABLE or ALTER TABLE statement. 

� Possible formats:
� Text File (default)
� SequenceFile
� RCFile
� Avro Files
� ORC Files
� Parquet
� Custom INPUTFORMAT and OUTPUTFORMAT



Text file terminators
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The actual file format (default)
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CREATE TABLE employees (
name STRING,
salary FLOAT,
subordinates ARRAY<STRING>,
deductions MAP<STRING, FLOAT>,
address STRUCT<street:STRING, city:STRING, 

state:STRING, zip:INT> )

John Doe^A100000.0^AMary Smith^BTodd Jones^AFederal
Taxes^C.2^BState Taxes^C.05^BInsurance^C.1^A1 Michigan
Ave.^BChicago^BIL^B60600\n



Partitioning
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CREATE TABLE message_log (
status STRING, msg STRING, hms STRING )
PARTITIONED BY ( year INT, month INT, day INT );

� The partition column is virtual
� Separate directories for each partition column
� On disk:

message_log/year=2018/month=01/day=01/
...
message_log/year=2018/month=01/day=31/
message_log/year=2018/month=02/day=01/
…
message_log/year=2018/month=12/day=31/



Advantages of partitioning
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� Speed queries by limiting scans to the correct partitions specified 
in the WHERE clause:

SELECT * FROM message_log
WHERE year = 2018 AND

month = 01 AND
day = 31;



Query execution with partitioning
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SELECT * FROM message_log;
� ALL these directories are read.

message_log/year=2018/month=01/day=01/
...
message_log/year=2018/month=01/day=31/
message_log/year=2018/month=02/day=01/
...
message_log/year=2018/month=12/day=31/

SELECT * FROM message_log
WHERE year = 2018 AND month = 01;
� Just 31 directories are read:

message_log/year=2018/month=01/day=01/
...
message_log/year=2018/month=01/day=31/
message_log/year=2018/month=02/day=01/
...

message_log/year=2018/month=12/day=31/



Other DDL Operations
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CREATE TABLE sample (foo INT, bar STRING) 
PARTITIONED BY (ds STRING); 

SHOW TABLES 's*';

DESCRIBE sample;

ALTER TABLE sample ADD COLUMNS (new_col INT);

DROP TABLE sample;



Clustering

18

CREATE TABLE sales ( 
id INT, items ARRAY<STRUCT<id:INT, name:STRING>> ) 

PARITIONED BY (ds STRING)
CLUSTERED BY (id) INTO 32 BUCKETS;

SELECT id FROM sales TABLESAMPLE (BUCKET 1 OUT OF 32)



External tables
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� Normally tables are in HDFS
� When you want to manage the data by yourself: external table (Hive does not 

use a default location for this table)

CREATE EXTERNAL TABLE employees (
name STRING,
...)

LOCATION '/data/employees/input';

� We own and manage that directory (this comes in handy if you already have 
data generated). 

� LOCATION is a directory: Hive will read all the files it contains.
� The table data are not deleted when you drop the table. 
� The table metadata are deleted from the Metastore. 



Locations
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� The locations can be local, in HDFS, or in S3. 
� Joins can join table data from any such source! 

LOCATION ‘file://path/to/data';... ... 
LOCATION 'hdfs://server:port/path/to/data'; ... 
LOCATION 's3n://mybucket/path/to/data'; 



Loading data
� Loading a file that contains two columns separated by ctrl-a into 

sample table: 
LOAD DATA LOCAL INPATH './sample.txt' 
OVERWRITE INTO TABLE sample PARTITION (ds='2018-02-24');
� Loading from HDFS: 
LOAD DATA INPATH '/user/hive/sample.txt' 
OVERWRITE INTO TABLE sample PARTITION (ds='2018-02-24');
� Loading from CSV: 
LOAD DATA LOCAL INPATH './sample.txt' 
OVERWRITE INTO TABLE sample PARTITION (ds='2018-02-24')
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
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Create and import
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CREATE LOCAL TABLE sample (foo INT, bar STRING) 
PARTITIONED BY (ds STRING)

ROW FORMAT DELIMITED FIELDS 
TERMINATED BY ',' STORED AS TEXTFILE 
location './sample.txt'; 



Select statements
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SELECT ymd, symbol FROM stocks
WHERE exchange = 'NASDAQ' AND symbol = 'AAPL' ;

� Queries involving projection require a MR job

SELECT * FROM stocks
WHERE exchange = 'NASDAQ' AND symbol = 'AAPL' ;

� If a * query is over partitions: no MR job is required!
� A * query without the WHERE clause does not require MR as well



Storing the results
� select column 'foo' from all rows of partition ds=2018-02-24:
SELECT foo FROM sample  WHERE ds='2018-02-24';

� store the result into a local directory:
INSERT OVERWRITE LOCAL DIRECTORY '/tmp/hdfs_out' 
SELECT * FROM sample WHERE ds='2018-02-24';

� store the result in HDFS:
INSERT OVERWRITE DIRECTORY '/tmp/hive-sample-out' 
SELECT * FROM sample;
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Aggregations and groups
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SELECT count(*) FROM stocks
WHERE exchange = 'NASDAQ' AND symbol = 'AAPL' ;

SELECT avg(price_close) FROM stocks
WHERE exchange = 'NASDAQ' AND symbol = 'AAPL' ;

SELECT year(ymd), avg(price_close)
FROM stocks
WHERE exchange = 'NASDAQ' AND symbol = 'AAPL' ;
GROUP BY year(ymd);



Aggregations and Groups
� get the max value of foo.
SELECT MAX(foo) FROM sample;

� groups the ds, sums the foo values for a given ds and count the 
amount of row for the given ds.

SELECT ds, COUNT(*), SUM(foo) FROM sample  GROUP BY ds;

� insert the output into a table.
INSERT OVERWRITE TABLE bar 
SELECT s.bar, COUNT(*) 
FROM sample s 
WHERE s.foo > 0 GROUP BY s.bar;
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Joins
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SELECT s.ymd, s.symbol, s.price_close, d.dividend
FROM stocks s JOIN dividends d 
ON s.ymd = d.ymd AND s.symbol = d.symbol
WHERE s.ymd > '2017-01-01';

� Only equality (x = y) conditions allowed
� Put the biggest table last!
� Reducer will stream the last table and buffer the others.



Join examples
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CREATE TABLE customer (id INT, name STRING, address STRING);
CREATE TABLE order_cust (id INT, cus_id INT, prod_id INT, price INT);

SELECT * FROM customer c JOIN order_cust o ON (c.id=o.cus_id);

SELECT c.id, c.name, c.address, ce.exp
FROM customer c JOIN ( SELECT cus_id, sum(price) AS exp

FROM order_cust GROUP BY cus_id ) ce
ON (c.id=ce.cus_id);



Types of Join
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� Four kinds supported: 
� Inner Joins
� Outer Joins (left, right, full)
� Semi Joins (not discussed here)
� Map-side Joins (an optimization of others).



An example of outer join
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SELECT s.ymd, s.symbol, s.price_close, d.dividend
FROM ( SELECT ymd, symbol, price_close

FROM stocks
WHERE exchange = 'NASDAQ' AND symbol = 'AAPL‘ ) s 

LEFT OUTER JOIN (
SELECT ymd, symbol, dividend
FROM dividends
WHERE exchange = 'NASDAQ' AND symbol = 'AAPL‘ ) d

ON s.ymd = d.ymd AND s.symbol = d.symbol;



Map-side Joins
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� Join tables in the mapper. 
� Optimization that eliminates the reduce step. 
� Useful if all but one table is small.

SELECT s.ymd, s.symbol, s.price_close, d.dividend
FROM dividends d JOIN stocks s
ON s.ymd = d.ymd AND s.symbol = d.symbol;

� If all but one table is small enough, the mapper can load the small tables in 
memory and do the joins there, rather than invoking an expensive reduce step.

� The optimization is automatic if: set hive.auto.convert.join = true;
� Can’t be used with RIGHT/FULL OUTER joins.



Built-in Functions
� Works on a single row. 
� Mathematical: round, floor, ceil, rand, exp...
� Collection: size, map_keys, map_values, array_contains
� Type Conversion: cast
� Date: from_unixtime, to_date, year, datediff...
� Conditional: if, case, coalesce
� String: length, reverse, upper, trim...

hive> SHOW FUNCTIONS;
!
!=
…
abs
acos
…
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Built-in Functions
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hive> DESCRIBE FUNCTION year;
year(date) - Returns the year of date
hive> DESCRIBE FUNCTION EXTENDED year;
year(date) - Returns the year of date
date is a string in the format of 'yyyy-MM-dd HH:mm:ss'
or 'yyyy-MM-dd'.
Example:

> SELECT year(‘2017-03-07') FROM src LIMIT 1;
2017



Examples
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SELECT year(ymd) FROM stocks;

SELECT year(ymd), avg(price_close) FROM stocks
WHERE symbol = 'AAPL'
GROUP BY year(ymd);



Table Generating Function
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SELECT explode(subordinates) AS
subs FROM employees;
� Generates zero or more output rows for each input row.
� Takes an array (or a map) as an input and outputs the elements 

of the array (map) as separate rows.
� Effectively a new table. 

� More flexible way to use TGFs: 
SELECT name, sub
FROM employees
LATERAL VIEW explode(subordinates) subView AS sub;



Example

pageAds

SELECT pageid, adid
FROM pageAds LATERAL VIEW explode(adid_list) subA AS adid;

subA

pageid (string) adid_list (Array<int>)

"front_page" [1, 2, 3]

"contact_page" [3, 4, 5]

pageid (string) adid (int)

"front_page" 1

"front_page" 2

... ...
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User-defined function (UDF)
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// Java
import org.apache.hadoop.hive.ql.exec.UDF; 

public class NowUDF extends UDF { 
public long evaluate() { 

return System.currentTimeMillis(); 
} 

} 

� You compile this Java code and build a jar file... 



UDF usage
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� … then:
� include the jar in the HIVE_CLASSPATH using ADD JAR
� create a TEMPORARY FUNCTION, 
� profit! 

-- HQL
ADD JAR path_to_jar;
…
CREATE TEMPORARY FUNCTION now AS 'com...NowUDF';
SELECT epoch_millis FROM …
WHERE epoch_millis < now() …;



Another example
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� Java code
package com.example.hive.udf;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;
public class Lower extends UDF {
public Text evaluate(final Text s) {

if (s == null) { return null; }
return new Text(s.toString().toLowerCase());

}
}
� Registering the class
CREATE TEMPORARY FUNCTION my_lower AS 'com.example.hive.udf.Lower';
� Using the function
SELECT my_lower(title), sum(freq) 
FROM titles GROUP BY my_lower(title);



Performance - Dataset structure

grep(key VARCHAR(10), field VARCHAR(90)) 2 columns, 
500 million rows, 
50GB

rankings(pageRank INT, pageURL VARCHAR(100), 
avgDuration INT)

3 columns, 
56.3 million rows, 
3.3GB.

uservisits(sourceIP VARCHAR(16), destURL VARCHAR(100), 
visitDate DATE, adRevenue FLOAT, userAgent VARCHAR(64), 
countryCode VARCHAR(3), languageCode VARCHAR(6), 
searchWord VARCHAR(32), duration INT ).

9 columns, 
465 million rows, 
60GB (scaled 
down from 200GB).
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Performance - Test query

Select query 1 SELECT * FROM grep WHERE field like ‘%XYZ%’;

Select query 2
SELECT pageRank, pageURL
FROM rankings 
WHERE pageRank > 10;

Aggregation query
SELECT sourceIP, SUM(adRevenue) 
FROM uservisits
GROUP BY sourceIP;

Join query

SELECT INTO Temp sourceIP, 
AVG(pageRank) as avgPageRank,
SUM(adRevenue) as totalRevenue

FROM rankings AS R, userVisits AS UV
WHERE R.pageURL = UV.destURL AND 

UV.visitDate BETWEEN Date(`1999-01-01')  AND 
Date(`2000-01-01')

GROUP BY UV.sourceIP;
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Performance - Result
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Hive – Performance
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� QueryA: SELECT count(1) FROM t;
� QueryB: SELECT concat(concat(concat(a,b),c),d) FROM t;
� QueryC: SELECT * FROM t;

SVN Revision Major Changes Query A Query B Query C

746906 Before Lazy Deserialization 83 sec 98 sec 183 sec

747293 Lazy Deserialization 40 sec 66 sec 185 sec

751166 Map-side Aggregation 22 sec 67 sec 182 sec

770074 Object Reuse 21 sec 49 sec 130 sec

781633 Map-side Join 21 sec 48 sec 132 sec

801497 Lazy Binary Format 21 sec 48 sec 132 sec



Tests on the last realese of Hive (2019) 
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Pros
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� Pros
� A easy way to process large scale data
� Support SQL-based queries
� Provide more user defined interfaces to extend
� Programmability
� Efficient execution plans for performance
� Interoperability with other database tools



Cons
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� Cons
� Potential inefficiency
� No easy way to append data 

� Updates are available starting in Hive 0.14

� Files in HDFS are rarely updated

� Future work
� Views / Variables
� More operator

� In/Exists semantic 



Hive Usage @ Facebook (2010)
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� Statistics per day:
� 4 TB of compressed new data added per day
� 135TB of compressed data scanned per day
� 7500+ Hive jobs on per day

� Hive simplifies Hadoop:
� ~200 people/month run jobs on Hadoop/Hive
� Analysts (non-engineers) use Hadoop through Hive
� 95% of jobs are Hive Jobs



Competitors/Related Work
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A non-exhaustive list:
� Spark SQL
� Google: (Apache) Drill, BigQuery
� IBM: BigSQL
� Oracle: Big Data SQL
� Microsoft: Cosmos
� Hortonworks: Stinger (fast Hive)
� Pivotal HD: HAWQ 
� Cloudera: Impala
� Facebook: (Apache) Presto
� Apache Tajo



Conclusion
� A easy way to process large scale data.
� Support SQL-based queries.
� Provide more user defined interfaces to extend
� Programmability.
� Typical applications:

� Log processing: Daily Report, User Activity Measurement
� Data/Text mining: Machine learning (Training Data)
� Business intelligence: Advertising Delivery, Spam Detection
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