
Credits: Claudio Martella, Fabio Fumarola

Riccardo Torlone
Università Roma Tre

Spark

1

Limitations of Map Reduce

2

� Slow due to disk IO, high communication, and serialization
Inefficient for:
� Iterative algorithms (Machine Learning, Graphs & Network Analysis)
� Interactive Data Mining (R, Excel-like computations, Ad hoc Reporting,

Searching)

Input iter. 1 iter. 2 . . .

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Map

Map

Map

Reduce

Reduce

Input Output

MapReduce: Weaknesses and limitations

3

� Efficiency
� High communication cost
� Frequent writing of output to disk
� Limited exploitation of main memory

� Programming model
� Hard to implement everything as a MR program
� Multiple MR steps can be needed also for simple operations
� Lack of control structures and data types

� Real-time processing
� A MR job requires to scan the entire input
� Stream processing and random access impossible

Solutions?

4

Leverage to memory:
� replace disks with SSD
� load data into memory

5

Spark
� Not a modified version of Hadoop
� Separate, fast, MapReduce-like engine

� In-memory data storage for very fast iterative queries
� General execution graphs and powerful optimizations
� Up to 100x faster than Hadoop MapReduce

� Compatible with Hadoop’s storage APIs
� Can run on top of a Hadoop cluster
� Can run on a cluster in standalone fashion or via Apache Mesos
� Can read/write to any Hadoop-supported system, including HDFS,

HBase, SequenceFiles, as well as to S3, MapR-FS, Cassandra, etc.

6

Project History
� Spark project started in 2009
� Developed originally at UC Berkeley’s AMPLab by Matei Zaharia
� Open sourced 2010, Apache project from 2013
� In 2014, Zaharia founded Databricks
� It is now the post popular project for big data analysis
� Current version: v2.4.5 / Feb. 2020
� Interest over time:

7

Why a New Programming Model?
� MapReduce greatly simplified big data analysis
� But as soon as it got popular, users wanted more:

� More complex, multi-stage applications (e.g.
iterative graph algorithms and machine learning)

� More efficiency
� More interactive ad-hoc queries

� Both multi-stage and interactive apps require faster data sharing
across parallel jobs

8

Data Sharing in MapReduce

9

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

Task 1

Task 2

Task 3

result 1

result 2

result 3

. . .

HDFS
read

iter. 1 iter. 2 . . .

Input

Data Sharing in Spark

10

Distributed
memory

Input

Task 1

Task 2

Task 3

. . .

one-time
processing

10-100× faster than network and disk

Spark Data Flow

11

iter. 1 iter. 2 . . .

Input

Not tied to 2 stage Map
Reduce paradigm

1. Extract a working set
2. Cache it
3. Query it repeatedly

Logistic regression in Hadoop and Spark

HDFS
read

Spark architecture

12

HDFS

Datanode Datanode Datanode....
Spark

Worker
Spark

Worker
Spark

Worker
....

Cache Cache Cache

Block Block Block

Cluster Manager

Spark Driver (Master)

Spark architecture anatomy

13

Spark architecture anatomy

14

� Applications run as independent sets of processes on a cluster,
coordinated by the SparkContext object in your main program (the
driver program)

� Each application gets its own executor processes, which stay up for the
duration of the whole application and run tasks in multiple threads.

� To run on a cluster, the SparkContext can connect to several types of
cluster managers (Spark’s cluster manager, Mesos or YARN), which
allocate resources across applications

� Once connected, Spark:
� acquires executors on nodes in the cluster, which run computations and store

data
� Next, it sends your application code to the executors.
� Finally, SparkContext sends tasks to the executors to run.

Spark Programming Model

15

Datanode

HDFS

Datanode…
User

(Developer)

Writes

sc=new SparkContext
rDD=sc.textfile(“hdfs://…”)
rDD.filter(…)
rDD.Cache
rDD.Count
rDD.map

Driver Program

SparkContext
Cluster

Manager

Worker Node

Executer Cache

Task Task

Worker Node

Executer Cache

Task Task

Spark Programming Model

16

User
(Developer)

Writes

sc=new SparkContext
rDD=sc.textfile(“hdfs://…”)
rDD.filter(…)
rDD.Cache
rDD.Count
rDD.map

Driver Program

RDD
(Resilient

Distributed
Dataset)

• Immutable Data structure
• In-memory (explicitly)
• Fault Tolerant
• Distributed Data Structure
• Controlled partitioning to

optimize data placement
• Can be manipulated using rich set

of operators.

Spark Programming Model
� Key idea: resilient distributed datasets (RDDs)

� Distributed collections of objects that can be cached in memory
across cluster nodes

� Manipulated through various parallel operators
� Automatically rebuilt on failure
� Can persist in Memory, on Disk, or both
� Can be partitioned to control parallel processing

� Interface
� Clean language-integrated API for Scala, Python, Java, and R
� Can be used interactively from Scala console

17

Spark’s Main Abstraction: RDDs

18

� Resilient Distributed Datasets or RDD are the distributed
memory abstractions that lets programmer perform in-memory
parallel computations on large clusters in a highly fault tolerant
manner.

� Currently 2 types of RDDs:
� Parallelized collections: created by executing operators on an existing

data collection. Developer can specify the number of slices to cut the
dataset into. Ideally 2-3 slices per CPU.

� Hadoop Datasets: created from any file stored on HDFS or other
storage systems supported by Hadoop (S3, Hbase etc). These are
created using SparkContext’s textFile operator. Default number of
slices in this case is 1 slice per file block.

Parallelized and distributed datasets

19

� Parallelized collections are created by calling SparkContext’s parallelize
method on an existing collection in your driver program.

val data = Array(1, 2, 3, 4, 5)
val distData = sc.parallelize(data)

� Once created, distData can be operated on in parallel.
distData.reduce((a, b) => a + b)

� Distributed datasets can be created from any storage source supported
by Hadoop, (HDFS, HBase, S3, etc.) using SparkContext’s textFile
method. This method takes an URI for the file and reads it as a collection
of lines.

scala> val distFile = sc.textFile("data.txt")

� Once created, distFile can be acted on by dataset operations.
distFile.map(s => s.length).reduce((a, b) => a + b)

Operators over RDDs

20

General DAG of operators
(e.g. map-reduce-reduce or

even more complex
combinations)

HDFS File Filtered RDD Mapped RDD

filter
(func = someFilter(…))

map
(func = someAction(...))

Operators over RDD

21

� Programmer can perform 3 types of operations

Transformations

• Create a new
dataset from and
existing one.

• Lazy in nature. They
are executed only
when some action is
performed.

• Example :
• Map(func)
• Filter(func)
• Distinct()

Actions

• Returns to the driver
program a value or
exports data to a
storage system after
performing a
computation.

• Example:
• Count()
• Reduce(func)
• Collect
• Take()

Persistence

• For caching datasets
in-memory for future
operations.

• Option to store on
disk or RAM or mixed
(Storage Level).

• Example:
• Persist()
• Cache()

Transformations

22

� Transformations operations on a RDD that return RDD objects or
collections of RDD
� e.g. map, filter, join, cogroup, etc.

� Transformations are lazy and are not executed immediately, but
only when an action requires a result to be returned to the driver
program.

� This design enables Spark to run more efficiently.
� For example, we can realize that a dataset created through map will

be used in a reduce and return only the result of the reduce to the
driver, rather than the larger mapped dataset.

Two kinds of transformations

23

� Narrow transformations
� They are the result of map, filter and such and operate over data from a single

partition only (i.e. they are self-sustained).
� An output RDD has partitions originating from a single partition of the

parent RDD.
� Spark groups narrow transformations as a stage.

� Wide transformations
� They are the result of groupByKey and reduceByKey. The data required to

compute the records in a single partition may reside in many partitions of the
parent RDD.

� All the tuples with the same key must end up in the same partition,
processed by the same task.

� Spark must execute RDD shuffle, which transfers data across cluster and
results in a new stage with a new set of partitions.

Transformations (1)

24

Transformation Meaning
map(func) Return a new distributed dataset formed by passing each element of the source

through a function func.
filter(func) Return a new dataset formed by selecting those elements of the source on

which func returns true.
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output items

(so func should return a Seq rather than a single item).
mapPartitions(func) Similar to map, but runs separately on each partition of the RDD, so func must be of

type Iterator<T> => Iterator<U> when running on an RDD of type T.
mapPartitionsWithIndex(func) Similar to mapPartitions, but also provides func with an integer value representing the

index of the partition, so func must be of type (Int, Iterator<T>) => Iterator<U> when
running on an RDD of type T.

sample(withReplacement, fraction,
seed)

Sample a fraction fraction of the data, with or without replacement, using a given
random number generator seed.

union(otherDataset) Return a new dataset that contains the union of the elements in the source dataset
and the argument.

intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source dataset
and the argument.

distinct([numTasks])) Return a new dataset that contains the distinct elements of the source dataset.
groupByKey([numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>)

pairs. Note: If you are grouping in order to perform an aggregation (such as a sum or
average) over each key, using reduceByKey or aggregateByKey will yield much better
performance. Note: By default, the number of reduce task depends on the number of
partitions of the parent RDD. You can pass an optional numTasks argument to set a
different number of tasks.

reduceByKey(func, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the
values for each key are aggregated using the given reduce function func, which must
be of type (V,V) => V. Like in groupByKey, the number of reduce tasks is
configurable through an optional second argument.

Transformations (2)

25

Transformation Meaning
aggregateByKey(zeroValue)(seqOp,
combOp, [numTasks])

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the
values for each key are aggregated using the given combine functions and a neutral
"zero" value. Allows an aggregated value type that is different than the input value
type, while avoiding unnecessary allocations. Like in groupByKey, the number of
reduce tasks is configurable through an optional second argument.

sortByKey([ascending], [numTasks]) When called on a dataset of (K, V) pairs where K implements Ordered, returns a
dataset of (K, V) pairs sorted by keys in ascending or descending order, as specified in
the boolean ascending argument.

join(otherDataset, [numTasks]) When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs
with all pairs of elements for each key. Outer joins are supported
through leftOuterJoin, rightOuterJoin, and fullOuterJoin.

cogroup(otherDataset, [numTasks]) When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (Iterable<V>,
Iterable<W>)) tuples. This operation is also called groupWith.

cartesian(otherDataset) When called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of
elements).

pipe(command, [envVars]) Pipe each partition of the RDD through a shell command, e.g. a Perl or bash script.
RDD elements are written to the process's stdin and lines output to its stdout are
returned as an RDD of strings.

coalesce(numPartitions) Decrease the number of partitions in the RDD to numPartitions. Useful for running
operations more efficiently after filtering down a large dataset.

repartition(numPartitions) Reshuffle the data in the RDD randomly to create either more or fewer partitions and
balance it across them. This always shuffles all data over the network.

repartitionAndSortWithinPartitions(
partitioner)

Repartition the RDD according to the given partitioner and, within each resulting
partition, sort records by their keys. This is more efficient than
calling repartition and then sorting within each partition because it can push the
sorting down into the shuffle machinery.

Actions
� Actions are operations that return values, i.e. any RDD operation

that returns a value of any type but an RDD is an action
� e.g., Reduce, Count, Collect, Take, SaveAs, …

� Actions are synchronous. They trigger execution of RDD
transformations to return values.

� Until no action is fired, the data to be processed is not even
accessed

� Only actions can materialize the entire process with real data.
� Cause data to be returned to driver or saved to output
� Cause data retrieval and execution of all transformations on RDDs

Actions

27

Action Meaning
reduce(func) Aggregate the elements of the dataset using a function func (which takes two arguments

and returns one). The function should be commutative and associative so that it can be
computed correctly in parallel.

collect() Return all the elements of the dataset as an array at the driver program. This is usually
useful after a filter or other operation that returns a sufficiently small subset of the data.

count() Return the number of elements in the dataset.
first() Return the first element of the dataset (similar to take(1)).
take(n) Return an array with the first n elements of the dataset.
takeSample(withReplacement,
num, [seed])

Return an array with a random sample of num elements of the dataset, with or without
replacement, optionally pre-specifying a random number generator seed.

takeOrdered(n, [ordering]) Return the first n elements of the RDD using either their natural order or a custom
comparator.

saveAsTextFile(path) Write the elements of the dataset as a text file (or set of text files) in a given directory in
the local filesystem, HDFS or any other Hadoop-supported file system. Spark will call
toString on each element to convert it to a line of text in the file.

saveAsSequenceFile(path)
(Java and Scala)

Write the elements of the dataset as a Hadoop SequenceFile in a given path in the local
filesystem, HDFS or any other Hadoop-supported file system. This is available on RDDs
of key-value pairs that implement Hadoop's Writable interface. In Scala, it is also
available on types that are implicitly convertible to Writable (Spark includes conversions
for basic types like Int, Double, String, etc).

saveAsObjectFile(path)
(Java and Scala)

Write the elements of the dataset in a simple format using Java serialization, which can
then be loaded usingSparkContext.objectFile().

countByKey() Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs with the count
of each key.

foreach(func) Run a function func on each element of the dataset. This is usually done for side effects
such as updating an Accumulator or interacting with external storage systems. Note:
modifying variables other than Accumulators outside of the foreach() may result in
undefined behavior. See Understanding closures for more details.

Persistence

28

� One of the most important capabilities in Spark is persisting (or caching)
a dataset in memory across operations.

� By default, each RDD is recomputed each time you run an action on it,
unless you persist the RDD.

� When you persist an RDD x, each node stores any partitions of x that it
computes in memory and reuses them in other actions on x. This allows
future actions to be much faster.

� You can mark an RDD to be persisted using the persist() or cache()
methods. The first time it is computed in an action, it will be kept in
memory on the nodes.

� Spark’s cache is fault-tolerant – if any partition of an RDD is lost, it will
automatically be recomputed using the transformations that originally
created it.

Storage level

29

� Using persist() one can specify the Storage Level for persisting an RDD.
� Cache() is just a short hand for default storage level, which is

MEMORY_ONLY.
� StorageLevel for persist(*):

� MEMORY_ONLY
� MEMORY_AND_DISK
� MEMORY_ONLY_SER, MEMORY_AND_DISK_SER
� DISK_ONLY
� MEMORY_ONLY_2, MEMORY_AND_DISK_2, etc.

� Which Storage level is best:
� Few things to consider:

� Try to keep in-memory as much as possible
� Serialization make the objects much more space-efficient
� Try not to spill to disk unless the functions that computed your datasets are expensive
� Use replication only if you want fault tolerance

How Spark works at runtime

30

� User application create RDDs, transform them, and run actions.
� This results in a DAG (Directed Acyclic Graph) of operators.
� DAG is compiled into stages
� Each stage is executed as a series of Task (one Task for each

Partition)
� Actions drive the execution

Example in Scala

31

val textFile = sc.textFile("hdfs://...")

val counts = textFile.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)

counts.saveAsTextFile("hdfs://...")

Same example in Python

32

text_file = sc.textFile("hdfs://...”)

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

output = counts.collect()

output.saveAsTextFile("hdfs://...")

Same example in Java

33

JavaRDD<String> textFile = sc.textFile("hdfs://...");

JavaRDD<String> words = textFile.flatMap(new FlatMapFunction<String, String>() {
public Iterable<String> call(String s) { return Arrays.asList(s.split(" ")); }

});

JavaPairRDD<String, Integer> pairs =
words.mapToPair(new PairFunction<String, String, Integer>() {

public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1); }

});

JavaPairRDD<String, Integer> counts =
pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {

public Integer call(Integer a, Integer b) { return a + b; }
});

counts.saveAsTextFile("hdfs://...");

Complete example in Java (1)

34

package org.apache.spark.examples;

import scala.Tuple2;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.regex.Pattern;

Complete example in Java (2)

35

public final class JavaWordCount {
private static final Pattern SPACE = Pattern.compile(" ");
public static void main(String[] args) throws Exception {
if (args.length < 1) {
System.err.println("Usage: JavaWordCount <file>");
System.exit(1);

}
SparkConf sparkConf = new SparkConf().setAppName("JavaWordCount");
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
JavaRDD<String> lines = ctx.textFile(args[0], 1);
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterator<String> call(String s) {
return Arrays.asList(SPACE.split(s)).iterator();

}
});

Complete example in Java (3)

36

JavaPairRDD<String, Integer> ones = words.mapToPair(
new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) {
return new Tuple2<>(s, 1);

}
});

JavaPairRDD<String, Integer> counts = ones.reduceByKey(
new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;

}
});

List<Tuple2<String, Integer>> output = counts.collect();
for (Tuple2<?,?> tuple : output) {
System.out.println(tuple._1() + ": " + tuple._2());

}
ctx.stop();

}
}

Example

37

text_file = sc.textFile("hdfs://...")

textFile

Example

38

counts = text_file.flatMap(lambda line: line.split(" ")) \

text_file = sc.textFile("hdfs://...")

textFile flatMap

Example

39
textFile map

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \

text_file = sc.textFile("hdfs://...")

flatMap

Example

40
textFile map

reduceByKey

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

text_file = sc.textFile("hdfs://...")

flatMap

Example

41
textFile map

reduceByKey

collect

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

output = counts.collect()

text_file = sc.textFile("hdfs://...")

flatMap

Example

42
textFile map

reduceByKey

collect

counts = text_file.flatMap(lambda line: line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a, b: a + b)

output = counts.collect()

output.saveAsTextFile("hdfs://...”)

text_file = sc.textFile("hdfs://...")

saveAs
TextFile

flatMap

Execution Plan

43

Stages are sequences of RDDs, that don’t have a Shuffle in between

textFile map
reduceByKey

collect

Stage 1 Stage
2

flatMap

Stage Execution

44

� Spark:
� Creates a task for each Partition in the new RDD
� Schedules and assign tasks to slaves

� All this happens internally (you need to do anything)

Task 1

Task 2

Task 3

Task 4

Spark Executor (Slaves)

45

Fetch Input

Execute Task

Write Output

Fetch Input

Execute Task

Write Output

Fetch Input

Execute Task

Write Output

Fetch Input

Execute Task

Write Output

Fetch Input

Execute Task

Write Output

Fetch Input

Execute Task

Write Output

Fetch Input

Execute Task

Write Output

worker 1

worker 2

worker 3

Summary of Components

46

� Task : The fundamental unit of execution in Spark

� Stage: Set of Tasks that run in parallel

� DAG : Logical Graph of RDD operations

� RDD : Parallel dataset with partitions

Conceptual Representation

RDD
RDD
RDD
RDD

Transformations

Action Value

counts = text_file.flatMap(lambda line: line.split(“ ")) \

.map(lambda word: (word, 1)) \

.reduceByKey(lambda a, b: a + b)

output = counts.collect()

text_file = sc.textFile("hdfs://...")

1

2

3

Action Value

output.saveAsTextFile("hdfs://...”)

4

Runtime execution (Log Mining)

48

Load error messages from a log into memory, then interactively
search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

...

cachedMsgs.saveAsTextFile(“hdfs://...”)

tasks

results

Cache 1

Cache 2

Cache 3

RDD creation
RDD transformation

Action

Full-text search of Wikipedia in <1 sec (vs 20 sec for on-disk data)

Scaled to 1 TB data in 5-7 sec (vs 170 sec for on-disk data)

Fault Tolerance

49

� RDDs track the series of transformations used to build them (their
lineage)

� Lineage information is used to recompute lost data
� E.g:

messages = textFile(...).filter(_.contains(“error”))

.map(_.split(‘\t’)(2))

HadoopRDD
path = hdfs://…

FilteredRDD
func = _.contains(...)

MappedRDD
func = _.split(…)

Another example: Logistic Regression

50

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>

(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x
).reduce(_ + _)
w -= gradient

}

println("Final w: " + w)

Initial parameter vector

Repeated MapReduce steps
to do gradient descent

Load data in memory once

Logistic Regression Performance

51

Other Spark Features

52

� Hash-based reduces (faster than MapReduce sort)
� Controlled data partitioning to lower communication

171

72

23

0

50

100

150

200

It
er

at
io

n
ti

m
e

(s
)

PageRank Performance

Hadoop

Basic Spark

Spark + Controlled
Partitioning

User Applications
� In-memory analytics & anomaly detection (Conviva)
� Interactive queries on data streams (Quantifind)
� Exploratory log analysis (Foursquare)
� Traffic estimation w/ GPS data (Mobile Millennium)
� Twitter spam classification (Monarch)
� . . .

53

Conviva GeoReport

54

� Group aggregations on many keys w/ same filter
� 40× gain over Hive from avoiding repeated reading, deserialization

and filtering

0,5

20

0 5 10 15 20

Spark

Hive

Time (hours)

Mobile Millennium Project

55

� Estimate city traffic from crowdsourced GPS data

Iterative EM algorithm
scaling to 160 nodes

What is Spark SQL?

56

� Spark module for structured data processing
� Port of Apache Hive to run on Spark
� Compatible with existing Hive data (you can run unmodified Hive

queries on existing data)
� Speedup of up to 40x
� Motivation:

� Hive is great, but Hadoop’s execution engine makes even the smallest
queries take minutes

� Many data users know SQL
� Can we extend Hive to run on Spark?

� Initially “Shark”, now “Spark SQL”

Hive Architecture

57

Meta
store

HDFS

Client

Driver

SQL
Parser

Query
Optimizer

Physical Plan

Execution

CLI JDBC

MapReduce

Spark SQL Architecture

58

Meta
store

HDFS

Client

Driver

SQL
Parser

Physical Plan

Execution

CLI JDBC

Spark

Cache Mgr.

Query
Optimizer

Efficient In-Memory Storage

59

� Simply caching records as Java objects is inefficient due to high
per-object overhead

� Instead, Spark SQL employs column-oriented storage using arrays
of primitive types.

� This format is called Parquet

1

Column Storage

2 3

john mike sally

4.1 3.5 6.4

Row Storage

1 john 4.1

2 mike 3.5

3 sally 6.4

Benefit: similarly compact size to serialized data,
but >5x faster to access

Datasets and DataFrames

60

� A (RD)Dataset is a distributed collection of data, usually organized
in records.
� A new interface added in Spark 1.6.
� The Dataset API is available in Scala and Java. Python does not but

many of the benefits of the Dataset API are already available.

� A DataFrame is a Dataset organized into named columns.
� It is conceptually equivalent to a table in a relational database.
� DataFrames can be constructed from: structured data files, tables in

Hive, external databases, or existing RDDs.
� The DataFrame API is available in Scala, Java, Python, and R.
� In Scala and Java, a DataFrame is represented by a Dataset of Rows.

Starting Point: SparkSession

61

� The entry point into all functionality in Spark SQL is the
SparkSession class.

� To create a basic SparkSession, just use SparkSession.builder()

from pyspark.sql import SparkSession

spark = SparkSession \

.builder \

.appName("Python Spark SQL basic example") \

.config("spark.some.config.option", "some-value") \

.getOrCreate()

Creating DataFrames

62

� Within a SparkSession, applications can create DataFrames from an
existing RDD, from a Hive table, or from Spark data sources (json,
parquet, csv, text, jdbc, orc, libsvm).

� Spark SQL can automatically infer the schema of a JSON dataset and
load it as a DataFrame.

df=spark.read.json("examples/src/main/Resources/people.json”)

df.show()

+----+-------+

| age| name|

+----+-------+

|null|Michael|

| 30| Andy|

| 19| Justin|

+----+-------+

DataFrame Operations

63

df.printSchema()

root

|-- age: long (nullable = true)

|-- name: string (nullable = true)

df.select("name").show()

+-------+

| name|

+-------+

|Michael|

| Andy|

+-------+

df.filter(df['age’]>21).show()

+---+----+

|age|name|

+---+----+

| 30|Andy|

+---+----+

df.groupBy("age").count().show()

+----+-----+

| age|count|

+----+-----+

| 19| 1|

| 30| 1|

+----+-----+

DataFrames provide a domain-specific language for structured
data manipulation in Scala, Java, Python and R.

Running SQL Queries Programmatically

64

The sql function on a SparkSession enables applications to run SQL
queries programmatically and returns the result as a DataFrame.

Register the DataFrame as a SQL temporary view

df.createOrReplaceTempView("people”)

sqlDF = spark.sql("SELECT * FROM people")

sqlDF.show()

+----+-------+

| age| name|

+----+-------+

|null|Michael|

| 30| Andy|

| 19| Justin|

+----+-------+

Load/Save Functions

65

� In the simplest form, the default data source (parquet unless otherwise
configured by spark.sql.sources.default) will be used for all
operations.

df=spark.read.load("examples/src/main/resources/
users.parquet")

df.select("name”,”age").write.save(”out.parquet")

� You can also manually specify the data source (json, parquet, csv, text ,
jdbc, orc, libsvm). DataFrames loaded from any data source type can be
converted into other types using this syntax.

df=spark.read.load("examples/src/main/resources/people.json",

format="json")

df.select("name”,"age").write.save(”out.parquet",
format="parquet")

Spark vs Hive

66

What’s Next?

67

� Spark’s model was motivated by two emerging uses (interactive
and multi-stage applications)

� Another emerging use case that needs fast data sharing is stream
processing
� Track and update state in memory as events arrive
� Large-scale reporting, click analysis, spam filtering, etc

Spark streaming

68

� Spark Streaming is an extension of the core Spark API that enables
scalable, high-throughput, fault-tolerant stream processing of live
data streams.

� Spark Streaming receives live input data streams and divides the
data into (micro)batches, which are then processed by the Spark
engine to generate the final stream of results in batches.

Data ingestion

69

� Many possible sources
� Usually a "publish & subscribe" system like Kafka

Spark operations on batches

70

Window operations

71

� Window operations are applied only to those RDDs that fall into a
'sliding' time window

� Fault-tolerance is supported by means of data replication among
multiple Spark worker nodes.

An example of Spark streaming

72

#StreamingContext is the main entry point streaming

from pyspark import SparkContext

from pyspark.streaming import StreamingContext

two working thread and batch interval of 1 second

sc = SparkContext("local[2]", "NetworkWordCount")

ssc = StreamingContext(sc, 1)

Create a lines DStream connected to a hostname:port

lines = ssc.socketTextStream("localhost", 9999)

Split each line into words

words = lines.flatMap(lambda line: line.split(" "))

Count each word in each batch

pairs = words.map(lambda word: (word, 1))

wordCounts = pairs.reduceByKey(lambda x, y: x + y)

Print the first ten elements of each RDD generated in the stream
wordCounts.pprint()

ssc.start() # Start the computation

ssc.awaitTermination() # Wait for the computation to terminate

Run-time model

73

� Runs as a series of small (~1 s) batch jobs, keeping state in
memory as fault-tolerant RDDs

� Intermix seamlessly with batch and ad-hoc queries

wordCounts =
scc.flatMap(lambda line:

line.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda a,b: a+b)

T=1

T=2

…

map reduceByKey

Can process 42 million records/second (4 GB/s)
on 100 nodes at sub-second latency

Spark MLlib & GraphX

74

� Spark MLlib: Machine Learning libraries included into the Spark
API.
� Machine Learning algorithms up to 100 times faster than

implementations in MapReduce
� Many algorithms and utilities: linear regression, clustering, frequent

itemset mining, matrix decomposition,...

� Spark GraphX: API for graph processing and parallel graph
computations integrated into Spark.
� Including, amongst others, PageRank, strongly connected

components, triangle count, etc.

Spark Software Stack

75

References

76

