
Credits: Claudio Martella

Riccardo Torlone
Università Roma Tre

Beyond Map-Reduce & Spark

1

Tools for big data processing

3

Hundreds of solutions

4

� A possible classification:
� Based on the features provided in the global architecture
� Based on the approach to big data processing

A global view of Big Data processing

5

ETL

Near-Real Time
Processing

Distributed File System (HDFS)

NoSQL
(HBase,

Cassandra,
MongoDB)

New SQL
(Oracle,
VoltDB,

Spanner)

Real Time
Processing

Analytics
(Spark,
Flink,

SQL-over-
Hadoop)

Batch
Processing

Stream
Processing

OLTP OLAP

Streaming
(Spark

Streaming,
Storm)

The lambda architecture for analytics

6

Data-broker Layer

Lambda vs kappa architecture

7

Orthogonal approaches to BD Processing

18

� Programming Model
� DAG
� Graph
� BSP
� SQL on Hadoop
� NoSQL/NewSQL

� Efficiency
� In-memory processing
� Columnar storage
� Multi-level execution trees

� Latency
� Batch
� Stream
� OLTP

Alternative programming models

19

� DAG
� Spark
� Tez
� Dremel
� Storm

� BSP
� MapReduce
� Pregel
� Giraph
� Hama

� Graph
� Giraph
� GraphLab
� GraphX
� GDBMS

� SQL on Hadoop
� Hive
� Spark SQL
� Drill
� Impala
� Presto
� Spanner
� Tajo

� NoSQL DBMS
� Key-Value
� Document store
� Column family

� NewSQL DBMS
� Google Spanner
� VoltDB
� ClusterixDB

Improving the performance

20

� In-memory processing
� Spark
� Flink
� M3R
� Terracotta/BigMemory
� In-memory DBMS

� Kognitio
� Hana
� VoltDB
� Redis
� …

� Columnar storage
� Dremel
� Impala
� Parquet
� Druid

� Multi-level execution trees
� Tez
� Dremel
� Impala

Supporting low latency

21

� Stream processing (near-real time)
� Flink
� Storm
� Spark Streaming
� S4
� Samza
� Dremel
� Hyracks

� OLTP (real time)
� NoSQL DBMSs
� NewSQL DBMSs

What else?

22

� Data Ingestion (collecting, aggregating, and moving big data)
� Kafka, Sqoop, Flume, …

� Scheduling and coordination (Hadoop workflow management and
coordination)
� Zookeeper, Oozie, Thrift, …

� System Deployment (Cluster management)
� Ambari, Mesos, Helix, …

� Data cleaning
� OpenRefine, DataCleaner , …

� Data visualization
� Tableau, D3.js, Kibana, …

� ...

An overview of some solutions for analytics

23

!

17!

Inserire'logo'o'denominazione''
del'cobeneficiario'

!
!

Figura!8!–!Architettura!lambda!e!kappa!a!confronto!
!

2.1.3 Tipologie!di!analisi!
!
Ci!occupiamo!ora!di!mostrare!come!l’architettura!proposta!nella!precedente!sezione!possa!essere!messa!a!
servizio! delle! esigenze! specifiche! di! una! applicazione! di! smart! street/ligthing! e,! più! in! generale,! di! una!
applicazione!per!l’IoT.!
!
In!questi!contesti,! l’obiettivo!principale!è!quello!di!offrire!degli!strumenti!efficaci!ed!efficienti!per! l’analisi!
delle!misurazioni!fatte!da!una!rete!di!sensori.!Questo!problema!pone!diverse!sfide,!a!causa!della!tipologia!
dei!dati!raccolti!e!della!quantità!e!rapidità!con!cui!questi!dati!vengono!raccolti!nel!corso!del!tempo.!!
!
Un!tipico!problema!nell’analisi!sensoristica!è!quello!di!rilevare!eventi!in!tempo!reale.!In!questo!contesto!la!
sfida!è!che!gli!eventi!semantici!di!alto!livello!sono!spesso!una!funzione!complessa!dei!dati!del!sensore!grezzi!
sottostanti.! In! alcuni! casi,! l'evento! originale! non! può! essere! rilevato! con! esattezza,! poiché! il! processo! di!
rilevamento!dell’evento!è!correlato!ai!dati!in!modo!ambiguo.!Inoltre,!i!dati!di!misurazione!dei!sensori!sono!
intrinsecamente! rumorosi!ed! incerti,! e!potrebbero!essere!affetti!da!misurazioni!mancanti!o! ridondanti,! a!
seconda! del! dominio.! Oltre! alla! rilevazione! di! eventi! realPtime,! l’utente! può! essere! interessato! a!
considerazioni! globali,! per! esempio! sul! consumo!energetico! globale! o!medio! in! certi! intervalli! temporali,!
sull’efficienza! delle! apparecchiature,! o! sui! macroPtrend! del! fenomeno! fisico! osservato.! Queste! analisi!
richiedono! l’elaborazione!di! collezioni!di!dati!più!grandi! rispetto!alla! rilevazione!di!eventi!e!producono! in!
genere!della!reportistica!che!non!richiede!vincoli!temporali!stringenti!per!poter!essere!prodotta.!!

An overview of some solutions

24

� Kafka
� Data Ingestion
� collecting, aggregating, and

moving big data

� Giraph
� Graph data model
� BSP processing model

� Storm
� Stream processing
� DAG processing model

� Tez
� DAG processing model
� SQL via Hive

� Dremel
� Columnar storage
� Multi-level execution trees
� SQL via BigQuery

What is Kafka?
� Kafka is a distributed publish-subscribe messaging system
� It’s designed to be

� Fast
� Scalable
� Durable

� The whole job of Kafka is to provide an "absorber" between the
flood of events and those who want to consume them in their own
way

Capabilities and applications

27

� Kafka has three key capabilities:
� Publish and subscribe streams of records.
� Store streams of records in a fault-tolerant durable way.
� Process streams of records as they occur.

� Kafka is generally used for two broad classes of applications:
� Building real-time streaming data pipelines that reliably get data

between systems or applications
� Building real-time streaming applications that transform or react to

the streams of data

Actors in Kafka

28

� Kafka has four core APIs:
� The ProducerAPI allows an application

to publish a stream of records to one or
more Kafka topics.

� The ConsumerAPI allows an application
to subscribe to one or more topics and
process the stream of records produced to
them.

� The Streams API allows an application
(stream processor) to consume an input
stream from one or more topics and
produce an output stream to one or more
output topics, effectively transforming the
input streams to output streams.

� The ConnectorAPI allows the connection
of Kafka topics to existing applications or
data systems.

Publish/subscribe messaging system
� Kafka maintains feeds of messages in categories called topics
� Producers publish messages (records) to one or more topics
� Consumers subscribe to topics and process the feed of published

messages
� A topic can have zero, one, or many consumers that subscribe to

the data written to it.

Kafka

Anatomy of a topic
� For each topic, the Kafka

cluster maintains a
partitioned log

� Each partition is an ordered,
immutable sequence of
records that is continually
appended

� The records in the partitions
are each assigned a
sequential id number called
the offset that uniquely
identifies each message within
the partition.

Retention
� The Kafka cluster retains all published records—whether or not

they have been consumed—for a configurable period of time; after
which it will be discarded to free up space.

� The offset of the records is controlled by consumer.
� Normally a consumer will advance its offset linearly as it reads records,

but it can consume records in any order it likes.
� Kafka consumers can come and go without much impact on the cluster

or on other consumers.

Kafka cluster
� Since Kafka is distributed in nature, Kafka is run as a cluster.
� A cluster is typically comprised multiple servers; each of which

is called a broker.
� Communication between the clients and the servers takes place

over TCP protocol

Distribution and partitions

Distribution and fault tolerance
� Each partition has one server which acts as the "leader" and zero

or more servers which act as "followers".
� The leader handles all read and write requests for the

partition while the followers passively replicate the leader.
� If the leader fails, one of the followers will automatically become

the new leader.
� Each server acts as a leader for some partitions and a

follower for others so load is well balanced within the cluster.

Producers
� Producers publish data to the topics by assigning records to a

partition within the topic either in a round-robin fashion or
according to some semantic partition function (say based on
some key in the message).

Consumers
� Consumers can be grouped in consumer groups
� Each record published to a topic is delivered to one consumer within each

consumer group.
� If all the consumers are in the same consumer group, then this works just

like a traditional queue balancing load over the consumers.
� If all the consumers have different consumer groups, then this works

like publish-subscribe and all messages are broadcast to all consumers.

Performance benchmark
� 500,000 messages published per second
� 22,000 messages consumed per second
� on a 2-node cluster
� with 6-disk RAID 10.

Key benefits
� Horizontally scalable

� It’s a distributed system can be elastically and transparently
expanded with no downtime

� High throughput
� High throughput is provided for both publishing and subscribing even

with many terabytes of stored messages

� Reliable delivery
� Persists messages on disk, and provides intra-cluster replication
� Supports large number of subscribers and automatically balances

consumers in case of failure.

Uses of Kafka
� Kafka as a Messaging System

� Messaging traditionally has two models: queuing and publish-
subscribe. The consumer group concept in Kafka generalizes these
two concepts.

� Kafka as a Storage System
� Data written to Kafka is written to disk and replicated for fault-

tolerance, decoupling the publishing phase from the consuming phase.
This makes Kafka very good storage system.

� Kafka for Stream Processing
� In Kafka a stream processor is anything that takes continual streams of

data from input topics, performs some processing on this input, and
produces continual streams of data to output topics.

Kafka uses ZooKeeper
� Kafka uses ZooKeeper, a centralized service used to maintain

naming and configuration data in a distributed system and to
provide flexible and robust synchronization.

� Zookeeper keeps track of status of the Kafka cluster nodes and
keeps track of Kafka topics, partitions etc.

Usage
� Start the Kafka server:

� Create a topic named test:

� List topics:

� Publish data:

� Consume data:

� Kafka Connect is a tool included with Kafka that runs connectors, which
implement the custom logic for interacting with an external system.

Ø bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 13 --topic test
Ø bin/create-topic.sh

> bin/kafka-topics.sh --list --zookeeper localhost:2181
test

> bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
This is a message
This is another message

> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning
This is a message
This is another message

Ø bin/kafka-server-start.sh config/server.properties
Ø bin/run-kafka.sh

Giraph

71

72
72

Timeline
� Inspired by Google Pregel (2010)
� Donated to ASF by Yahoo! in 2011
� Top-level project in 2012
� 1.0 release in January 2013
� 1.1 release in October 2014
� 1.2.0 release in October 2016

73
73

Plays well with Hadoop

74

Graphs are simple

75
75

A computer network

76

A social network

77

A semantic network

78
78

A map

79
79

Vertex-centric API

80
80

BSP machine

81

BSP & Giraph

82

Architecture

83
83

Giraph job lifetime

84

Shortest Paths

85

Shortest Paths

86
86

Shortest Paths

87
87

Shortest Paths

88
88

Shortest Paths

89
89

Properties

90

� Stateful (in-memory)
� Only intermediate values (messages) sent
� Hits the disk at input, output, checkpoint
� Combiners (minimizes messages)
� Aggregators (global aggregations)

90

Checkpointing

91
91

Failure management

92
92

Giraph scales

93

Giraph is fast

94

� 100x over MR
� Jobs run within minutes
� Given you have resources

94

Many stores with Gora

95
95

And graph databases

96
96

97

Storm?

98

� Storm is distributed processing of big data streams
� “Distributed and fault-tolerant real-time computation”
� http://storm.incubator.apache.org/
� Originated at BackType/Twitter, open sourced in late 2011
� Implemented in Clojure, some Java
� 12 core committers, plus ~ 70 contributors
� Current version: 2.1.0 (Oct 2019)
� Competitors: Flink, Streaming Spark, Samza, Apex, ..

WordCount example

100

(1.1.1.1, “foo.com”)
(2.2.2.2, “bar.net”)
(3.3.3.3, “foo.com”)
(4.4.4.4, “foo.com”)
(5.5.5.5, “bar.net”)

DNS queries

((“foo.com”, 3)
(“bar.net”, 2))

Top queried
domains

?

((1.1.1.1, “foo.com”)
(2.2.2.2, “bar.net”)
(3.3.3.3, “foo.com”)
(4.4.4.4, “foo.com”)
(5.5.5.5, “bar.net”))

DNS queries

(“foo.com”, “bar.net”, “foo.com”,
“foo.com”, “bar.net”)

{“bar.net” -> 2, “foo.com” -> 3}

((“foo.com”, 3)
(“bar.net”, 2))

f

g

h
101

Clojure

102

� Is a dialect of Lisp that targets the JVM (and JavaScript)
� clojure-1.5.1.jar

� "Dynamic, compiled programming language"
� Predominantly functional programming

� Many interesting characteristics and value propositions for
software development, notably for concurrent applications

� Storm’s core is implemented in Clojure

Previous WordCount example in Clojure

103

(sort-by val > (frequencies (map second queries)))

h g f

(->> queries (map second) frequencies (sort-by val >))

Alternative, left-to-right syntax with ->>:

Clojure REPL

104

user> queries
(("1.1.1.1" "foo.com") ("2.2.2.2" "bar.net")
("3.3.3.3" "foo.com") ("4.4.4.4" "foo.com")
("5.5.5.5" "bar.net"))

user> (map second queries)
("foo.com" "bar.net" "foo.com" "foo.com" "bar.net")

user> (frequencies (map second queries))
{"bar.net" 2, "foo.com" 3}

user> (sort-by val > (frequencies (map second queries)))
(["foo.com" 3] ["bar.net" 2])

DAG processing model

105

� A topology in Storm wires data and functions via a DAG
� Executes on many machines like a MR job in Hadoop

Spout 2 Bolt 3

Bolt 2

Bolt 4

Spout 1

Bolt 1

data

functions

Relationship between DAG and FP

106

Bolt 2

Bolt 4

Spout 1

Bolt 1

data

f

g

h

f(data)h(,)g(data)

Previous WordCount example in Storm

107

Spout Bolt 1

queries f g h
Bolt 2 Bolt 3

(->> queries (map second) frequencies (sort-by val >))

Data model

108

� Tuple = datum containing 1+ fields

� Values can be of any type
� Stream = unbounded sequence of tuples

(1.1.1.1, “foo.com”)

...
(1.1.1.1, “foo.com”)
(2.2.2.2, “bar.net”)
(3.3.3.3, “foo.com”)

...

Spouts and bolts

109

� Spout: source of data streams

� Unreliable (fire-and-forget) or reliable (replay failed tuples).

� Bolt: consumes 1+ streams and potentially produces new streams

� Can do anything from running functions, filter tuples, joins, talk to DB,
etc.

� Complex stream transformations often require multiple steps and thus
multiple bolts.

Spout 1 Bolt 1

Spout 1 Bolt 1 Bolt 2

Stream groupings control the data flow

110

� Shuffle grouping: random; distribute load evenly to downstream bolts
� Fields grouping: GROUP BY field(s)
� All grouping: replicates stream across all the bolt’s tasks;
� Global grouping: stream goes to a single one of the bolt’s tasks;
� Direct grouping: data producer decides which task of the consumer will receive the data
� Custom groupings are possible, too.

Bolt C

Bolt B

Spout

Bolt A

Run time

111

Example of a running topology

112

Storm architecture

113

Commercial solutions: the big boys

114

� Oracle
� Big Data Discovery
� GoldenGate for Big Data,
� Big Data SQL
� NoSQL Database

� IBM
� BLU Acceleration
� PureData System for Hadoop
� InfoSphere BigInsights
� InfoSphere Streams

� Microsoft
� Windows Azure HDInsight

� Amazon
� Amazon Web Services

� Google
� Dremel
� BigQuery

� SAS
� In-Memory Statistics
� Visual Analytics

� SAP
� Hana
� SAP IQ
� SAP ESP

� VMWare
� vSphere

� Cisco
� Connected Analytics
� Big Data Warehouse Expansion
� Prime Analytics

Many new players

115

