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Beyond Map-Reduce & Spark
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Tools for big data processing
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Hundreds of solutions
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� A possible classification:
� Based on the features provided in the global architecture
� Based on the approach to big data processing



A global view of Big Data processing
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The lambda architecture for analytics
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Data-broker Layer



Lambda vs kappa architecture
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Orthogonal approaches to BD Processing
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� Programming Model
� DAG
� Graph
� BSP
� SQL on Hadoop
� NoSQL/NewSQL

� Efficiency
� In-memory processing
� Columnar storage 
� Multi-level execution trees 

� Latency
� Batch
� Stream
� OLTP



Alternative programming models
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� DAG
� Spark
� Tez
� Dremel
� Storm

� BSP
� MapReduce
� Pregel
� Giraph
� Hama

� Graph
� Giraph
� GraphLab
� GraphX
� GDBMS

� SQL on Hadoop
� Hive
� Spark SQL
� Drill
� Impala
� Presto
� Spanner
� Tajo

� NoSQL DBMS
� Key-Value
� Document store
� Column family

� NewSQL DBMS
� Google Spanner
� VoltDB
� ClusterixDB



Improving the performance
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� In-memory processing
� Spark
� Flink
� M3R
� Terracotta/BigMemory
� In-memory DBMS

� Kognitio
� Hana
� VoltDB
� Redis
� …

� Columnar storage 
� Dremel
� Impala
� Parquet
� Druid 

� Multi-level execution trees
� Tez
� Dremel
� Impala



Supporting low latency
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� Stream processing (near-real time)
� Flink
� Storm
� Spark Streaming
� S4
� Samza
� Dremel
� Hyracks

� OLTP (real time)
� NoSQL DBMSs
� NewSQL DBMSs



What else?
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� Data Ingestion (collecting, aggregating, and moving big data)
� Kafka, Sqoop, Flume, …

� Scheduling and coordination (Hadoop workflow management and 
coordination)
� Zookeeper, Oozie, Thrift, … 

� System Deployment (Cluster management)
� Ambari, Mesos, Helix, …

� Data cleaning
� OpenRefine, DataCleaner , …

� Data visualization
� Tableau, D3.js, Kibana, …

� ...



An overview of some solutions for analytics
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!
!

Figura!8!–!Architettura!lambda!e!kappa!a!confronto!
!

2.1.3 Tipologie!di!analisi!
!
Ci!occupiamo!ora!di!mostrare!come!l’architettura!proposta!nella!precedente!sezione!possa!essere!messa!a!
servizio! delle! esigenze! specifiche! di! una! applicazione! di! smart! street/ligthing! e,! più! in! generale,! di! una!
applicazione!per!l’IoT.!
!
In!questi!contesti,! l’obiettivo!principale!è!quello!di!offrire!degli!strumenti!efficaci!ed!efficienti!per! l’analisi!
delle!misurazioni!fatte!da!una!rete!di!sensori.!Questo!problema!pone!diverse!sfide,!a!causa!della!tipologia!
dei!dati!raccolti!e!della!quantità!e!rapidità!con!cui!questi!dati!vengono!raccolti!nel!corso!del!tempo.!!
!
Un!tipico!problema!nell’analisi!sensoristica!è!quello!di!rilevare!eventi!in!tempo!reale.!In!questo!contesto!la!
sfida!è!che!gli!eventi!semantici!di!alto!livello!sono!spesso!una!funzione!complessa!dei!dati!del!sensore!grezzi!
sottostanti.! In! alcuni! casi,! l'evento! originale! non! può! essere! rilevato! con! esattezza,! poiché! il! processo! di!
rilevamento!dell’evento!è!correlato!ai!dati!in!modo!ambiguo.!Inoltre,!i!dati!di!misurazione!dei!sensori!sono!
intrinsecamente! rumorosi!ed! incerti,! e!potrebbero!essere!affetti!da!misurazioni!mancanti!o! ridondanti,! a!
seconda! del! dominio.! Oltre! alla! rilevazione! di! eventi! realPtime,! l’utente! può! essere! interessato! a!
considerazioni! globali,! per! esempio! sul! consumo!energetico! globale! o!medio! in! certi! intervalli! temporali,!
sull’efficienza! delle! apparecchiature,! o! sui! macroPtrend! del! fenomeno! fisico! osservato.! Queste! analisi!
richiedono! l’elaborazione!di! collezioni!di!dati!più!grandi! rispetto!alla! rilevazione!di!eventi!e!producono! in!
genere!della!reportistica!che!non!richiede!vincoli!temporali!stringenti!per!poter!essere!prodotta.!!



An overview of some solutions
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� Kafka
� Data Ingestion
� collecting, aggregating, and 

moving big data

� Giraph
� Graph data model
� BSP processing model

� Storm
� Stream processing
� DAG processing model

� Tez
� DAG processing model
� SQL via Hive

� Dremel
� Columnar storage 
� Multi-level execution trees
� SQL via BigQuery





What is Kafka?
� Kafka is a distributed publish-subscribe messaging system
� It’s designed to be 

� Fast 
� Scalable
� Durable 

� The whole job of Kafka is to provide an "absorber" between the 
flood of events and those who want to consume them in their own 
way



Capabilities and applications
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� Kafka has three key capabilities:
� Publish and subscribe streams of records.
� Store streams of records in a fault-tolerant durable way.
� Process streams of records as they occur.

� Kafka is generally used for two broad classes of applications:
� Building real-time streaming data pipelines that reliably get data 

between systems or applications
� Building real-time streaming applications that transform or react to 

the streams of data



Actors in Kafka
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� Kafka has four core APIs:
� The ProducerAPI allows an application

to publish a stream of records to one or 
more Kafka topics.

� The ConsumerAPI allows an application
to subscribe to one or more topics and 
process the stream of records produced to 
them.

� The Streams API allows an application
(stream processor) to consume an input 
stream from one or more topics and 
produce an output stream to one or more 
output topics, effectively transforming the 
input streams to output streams.

� The ConnectorAPI allows the connection 
of Kafka topics to existing applications or 
data systems. 



Publish/subscribe messaging system
� Kafka maintains feeds of messages in categories called topics
� Producers publish messages (records) to one or more topics
� Consumers subscribe to topics and process the feed of published 

messages
� A topic can have zero, one, or many consumers that subscribe to 

the data written to it.

Kafka



Anatomy of a topic
� For each topic, the Kafka 

cluster maintains a 
partitioned log

� Each partition is an ordered, 
immutable sequence of 
records that is continually 
appended 

� The records in the partitions 
are each assigned a 
sequential id number called 
the offset that uniquely 
identifies each message within 
the partition. 



Retention
� The Kafka cluster retains all published records—whether or not 

they have been consumed—for a configurable period of time; after 
which it will be discarded to free up space.

� The offset of the records is controlled by consumer. 
� Normally a consumer will advance its offset linearly as it reads records, 

but it can consume records in any order it likes.
� Kafka consumers can come and go without much impact on the cluster 

or on other consumers. 



Kafka cluster
� Since Kafka is distributed in nature, Kafka is run as a cluster. 
� A cluster is typically comprised multiple servers; each of which 

is called a broker. 
� Communication between the clients and the servers takes place 

over TCP protocol



Distribution and partitions



Distribution and fault tolerance
� Each partition has one server which acts as the "leader" and zero 

or more servers which act as "followers". 
� The leader handles all read and write requests for the 

partition while the followers passively replicate the leader.
� If the leader fails, one of the followers will automatically become 

the new leader. 
� Each server acts as a leader for some partitions and a 

follower for others so load is well balanced within the cluster. 



Producers
� Producers publish data to the topics by assigning records to a 

partition within the topic either in a round-robin fashion or 
according to some semantic partition function (say based on 
some key in the message).



Consumers
� Consumers can be grouped in consumer groups
� Each record published to a topic is delivered to one consumer within each 

consumer group.
� If all the consumers are in the same consumer group, then this works just 

like a traditional queue balancing load over the consumers. 
� If all the consumers have different consumer groups, then this works 

like publish-subscribe and all messages are broadcast to all consumers. 



Performance benchmark
� 500,000 messages published per second 
� 22,000 messages consumed per second 
� on a 2-node cluster 
� with 6-disk RAID 10. 



Key benefits
� Horizontally scalable

� It’s a distributed system can be elastically and transparently
expanded with no downtime

� High throughput
� High throughput is provided for both publishing and subscribing even 

with many terabytes of stored messages

� Reliable delivery 
� Persists messages on disk, and provides intra-cluster replication
� Supports large number of subscribers and automatically balances 

consumers in case of failure.



Uses of Kafka
� Kafka as a Messaging System

� Messaging traditionally has two models: queuing and publish-
subscribe. The consumer group concept in Kafka generalizes these 
two concepts. 

� Kafka as a Storage System
� Data written to Kafka is written to disk and replicated for fault-

tolerance, decoupling the publishing phase from the consuming phase. 
This makes Kafka very good storage system.

� Kafka for Stream Processing
� In Kafka a stream processor is anything that takes continual streams of 

data from input topics, performs some processing on this input, and 
produces continual streams of data to output topics.



Kafka uses ZooKeeper
� Kafka uses ZooKeeper, a centralized service used to maintain

naming and configuration data in a distributed system and to 
provide flexible and robust synchronization. 

� Zookeeper keeps track of status of the Kafka cluster nodes and 
keeps track of Kafka topics, partitions etc.



Usage
� Start the Kafka server:

� Create a topic named test:

� List topics:

� Publish data:

� Consume data:

� Kafka Connect is a tool included with Kafka that runs connectors, which 
implement the custom logic for interacting with an external system.

Ø bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 13 --topic test
Ø bin/create-topic.sh

> bin/kafka-topics.sh --list --zookeeper localhost:2181
test

> bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
This is a message
This is another message

> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning
This is a message
This is another message

Ø bin/kafka-server-start.sh config/server.properties
Ø bin/run-kafka.sh



Giraph
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Timeline
� Inspired by Google Pregel (2010)
� Donated to ASF by Yahoo! in 2011
� Top-level project in 2012
� 1.0 release in January 2013
� 1.1 release in October 2014
� 1.2.0 release in October 2016
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Plays well with Hadoop
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Graphs are simple
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A computer network
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A social network
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A semantic network
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A map
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Vertex-centric API
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BSP machine
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BSP & Giraph
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Architecture
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Giraph job lifetime
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Shortest Paths

85



Shortest Paths
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Shortest Paths
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Shortest Paths
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Shortest Paths
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Properties
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� Stateful (in-memory)
� Only intermediate values (messages) sent
� Hits the disk at input, output, checkpoint
� Combiners (minimizes messages)
� Aggregators (global aggregations)

90



Checkpointing
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Failure management
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Giraph scales
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Giraph is fast
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� 100x over MR 
� Jobs run within minutes
� Given you have resources

94



Many stores with Gora
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And graph databases
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Storm?
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� Storm is distributed processing of big data streams
� “Distributed and fault-tolerant real-time computation”
� http://storm.incubator.apache.org/  
� Originated at BackType/Twitter, open sourced in late 2011
� Implemented in Clojure, some Java
� 12 core committers, plus ~ 70 contributors
� Current version: 2.1.0 (Oct 2019)
� Competitors: Flink, Streaming Spark, Samza, Apex, ..



WordCount example
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(1.1.1.1, “foo.com”)
(2.2.2.2, “bar.net”)
(3.3.3.3, “foo.com”)
(4.4.4.4, “foo.com”)
(5.5.5.5, “bar.net”)

DNS queries

( (“foo.com”, 3)
(“bar.net”, 2) )

Top queried
domains

?



( (1.1.1.1, “foo.com”)
(2.2.2.2, “bar.net”)
(3.3.3.3, “foo.com”)
(4.4.4.4, “foo.com”)
(5.5.5.5, “bar.net”) )

DNS queries

(“foo.com”, “bar.net”, “foo.com”,
“foo.com”, “bar.net”)

{“bar.net” -> 2, “foo.com” -> 3}

( (“foo.com”, 3)
(“bar.net”, 2) )

f

g

h
101



Clojure
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� Is a dialect of Lisp that targets the JVM (and JavaScript)
� clojure-1.5.1.jar

� "Dynamic, compiled programming language"
� Predominantly functional programming

� Many interesting characteristics and value propositions for 
software development, notably for concurrent applications

� Storm’s core is implemented in Clojure



Previous WordCount example in Clojure
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(sort-by val > (frequencies (map second queries)))

h g f

(->> queries (map second) frequencies (sort-by val >))

Alternative, left-to-right syntax with ->>:



Clojure REPL
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user> queries
(("1.1.1.1" "foo.com") ("2.2.2.2" "bar.net")
("3.3.3.3" "foo.com") ("4.4.4.4" "foo.com")
("5.5.5.5" "bar.net"))

user> (map second queries)
("foo.com" "bar.net" "foo.com" "foo.com" "bar.net")

user> (frequencies (map second queries))
{"bar.net" 2, "foo.com" 3}

user> (sort-by val > (frequencies (map second queries)))
(["foo.com" 3] ["bar.net" 2])



DAG processing model
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� A topology in Storm wires data and functions via a DAG
� Executes on many machines like a MR job in Hadoop

Spout 2 Bolt 3

Bolt 2

Bolt 4

Spout 1

Bolt 1

data

functions



Relationship between DAG and FP

106

Bolt 2

Bolt 4

Spout 1

Bolt 1

data

f

g

h

f(data)h(        ,        )g(data)



Previous WordCount example in Storm 
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Spout Bolt 1

queries f g h
Bolt 2 Bolt 3

(->> queries  (map second) frequencies (sort-by val >) )



Data model
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� Tuple = datum containing 1+ fields

� Values can be of any type
� Stream = unbounded sequence of tuples

(1.1.1.1, “foo.com”)

...
(1.1.1.1, “foo.com”)
(2.2.2.2, “bar.net”)
(3.3.3.3, “foo.com”)

...



Spouts and bolts
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� Spout: source of data streams

� Unreliable (fire-and-forget) or reliable (replay failed tuples).

� Bolt: consumes 1+ streams and potentially produces new streams

� Can do anything from running functions, filter tuples, joins, talk to DB, 
etc.

� Complex stream transformations often require multiple steps and thus 
multiple bolts.

Spout 1 Bolt 1

Spout 1 Bolt 1 Bolt 2



Stream groupings control the data flow
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� Shuffle grouping: random; distribute load evenly to downstream bolts
� Fields grouping: GROUP BY field(s)
� All grouping: replicates stream across all the bolt’s tasks; 
� Global grouping: stream goes to a single one of the bolt’s tasks; 
� Direct grouping: data producer decides which task of the consumer will receive the data
� Custom groupings are possible, too.

Bolt C

Bolt B

Spout

Bolt A



Run time
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Example of a running topology
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Storm architecture
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Commercial solutions: the big boys
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� Oracle
� Big Data Discovery
� GoldenGate for Big Data, 
� Big Data SQL 
� NoSQL Database 

� IBM
� BLU Acceleration
� PureData System for Hadoop
� InfoSphere BigInsights
� InfoSphere Streams 

� Microsoft
� Windows Azure HDInsight

� Amazon
� Amazon Web Services

� Google
� Dremel
� BigQuery

� SAS
� In-Memory Statistics 
� Visual Analytics

� SAP
� Hana
� SAP IQ
� SAP ESP

� VMWare
� vSphere

� Cisco
� Connected Analytics 
� Big Data Warehouse Expansion
� Prime Analytics



Many new players
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