
Riccardo Torlone
Università Roma Tre

NoSQL systems:
introduction and data models



CREDITS: Jimmy Lin (University of Maryland)

Leveraging the NoSQL boom

2



CREDITS: Jimmy Lin (University of Maryland)

Why NoSQL?
� In the last fifty years relational databases have been the default 

choice for serious data storage.
� An architect starting a new project:

� your only choice is likely to be which relational database to use. 
� often not even that, if your company has a dominant vendor.

� In the past, other proposals for database technology: 
� deductive databases in the 1980’s
� object databases in the 1990’s
� XML databases in the 2000’s
� these alternatives never got anywhere.

3



CREDITS: Jimmy Lin (University of Maryland)

The Value of Relational Databases
� Effective and efficient management of persistent data
� Concurrency control
� Data integration
� A standard data model
� A standard query language

4



CREDITS: Jimmy Lin (University of Maryland)

Impedance Mismatch
� Difference between the persistent data model and the in-memory 

data structures

5



CREDITS: Jimmy Lin (University of Maryland)

A proposal to solve the problem (1990s)
� Databases that replicate the in-memory data structures to disk 
� Object-oriented databases!

� Faded into obscurity in a few years..
� Solution emerged:

� object-relational mapping frameworks6



CREDITS: Jimmy Lin (University of Maryland)

Evolution of applications
� OO databases are dead. Why?

� SQL provides an integration mechanism between applications
� The database acts as an integration database
� Multiple applications one database

� 2000s: a distinct shift to application databases (SOA)
� Web services add more flexibility for the data structure being exchanged
� richer data structures to reduce the number of round trips

� nested records, lists, etc.
� usually represented in XML or JSON.
� you get more freedom of choosing a database

� a decoupling between your internal database and the services with which you talk to the 
outside world

� Despite this freedom, however, it wasn’t apparent that application databases led 
to a big rush to alternative data stores.

Relational databases are familiar and usually work very well 
(or, at least, well enough)

7



CREDITS: Jimmy Lin (University of Maryland)

Attack of the Clusters
� A shift from scale up to scale out

� With the explosion of data volume the computer architectures based 
on cluster of commodity hardware emerged as the only solution

� but relational databases are not designed to run (and do not work 
well) on clusters!

� The mismatch between relational databases and clusters led some 
organization to consider alternative solutions to data storage

� Google: BigTable
� Amazon: Dynamo

8



CREDITS: Jimmy Lin (University of Maryland)

NoSQL
� Term appeared in the late 90s 

� open-source relational database [Strozzi NoSQL]
� tables as ASCII files, without SQL

� Current interpretation
� June 11, 2009: meetup in San Francisco
� Open-source, distributed, non-relational databases
� Hashtag chosen: #NoSQL
� Main features:

� Not using SQL and the relational model
� Open-source projects (mostly)
� Running on clusters
� Schemaless

� However, no accepted precise definitions
� Most people say that NoSQL means "Not Only SQL”

9



CREDITS: Jimmy Lin (University of Maryland)

Key Points
� Relational databases have been a successful technology for twenty years, 

providing persistence, concurrency control, and an integration mechanism
� Application developers have been frustrated with the impedance mismatch 

between the relational model and the in-memory data structures
� There is a movement away from using databases as integration points towards 

encapsulating databases within applications and integrating through services
� The vital factor for a change in data storage was the need to support large 

volumes of data by running on clusters. Relational databases are not designed to 
run efficiently on clusters.

� NoSQL is an accidental neologism. There is no prescriptive definition—all you 
can make is an observation of common characteristics.

� The common characteristics of NoSQL databases are:
� Not using the relational model
� Running well on clusters
� Open-source
� Schemaless

10

Popularity

http://db-engines.com/en/ranking


CREDITS: Jimmy Lin (University of Maryland)

The non-relational world

11



CREDITS: Jimmy Lin (University of Maryland)

NoSQL Data Models
� A data model is a set of constructs for representing the 

information
� Relational model: tables, columns and rows

� Storage model: how the DBMS stores and manipulates the data 
internally

� A data model is usually independent of the storage model
� Data models for NoSQL systems:

� aggregate models
� key-value, 
� document, 
� column-family

� graph-based models

12



CREDITS: Jimmy Lin (University of Maryland)

Aggregates
� Data as atomic units that have a complex structure 

� more structure than just a set of tuples
� example:

� complex record with: simple fields, arrays, records nested inside

� Aggregate in Domain-Driven Design
� a collection of related objects that we treat as a unit
� a unit for data manipulation and management of consistency

� Advantages of aggregates:
� easier for application programmers to work with
� easier for database systems to handle operating on a cluster

13



CREDITS: Jimmy Lin (University of Maryland)

Example

14



CREDITS: Jimmy Lin (University of Maryland)

Relational implementation

15



CREDITS: Jimmy Lin (University of Maryland)

A possible aggregation

16



CREDITS: Jimmy Lin (University of Maryland)

Aggregate representation

17



CREDITS: Jimmy Lin (University of Maryland)

Aggregate implementation

18



CREDITS: Jimmy Lin (University of Maryland)

Another possible aggregation

19



CREDITS: Jimmy Lin (University of Maryland)

Aggregate representation (2)

20



CREDITS: Jimmy Lin (University of Maryland)

Aggregate implementation (2)

21

// in customers
{
"customer": {
"id": 1,
"name": "Martin",
"billingAddress": [{"city": "Chicago"}],
"orders": [

{
"id":99,
"customerId":1,
"orderItems":[
{
"productId":27,
"price": 32.45,
"productName": "NoSQL Distilled"
}

],
"shippingAddress":[{"city":"Chicago"}]
"orderPayment":[

{
"ccinfo":"1000-1000-1000-1000",
"txnId":"abelif879rft",
"billingAddress": {"city": "Chicago"}
}],

}]
}
}



CREDITS: Jimmy Lin (University of Maryland)

Design strategy
� No universal answer for how to draw aggregate boundaries
� It depends entirely on how you tend to manipulate data! 

� Accesses on a single order at a time: first solution
� Accesses on customers with all orders: second solution

� Context-specific
� some applications will prefer one or the other
� even within a single system

� Focus on the unit of interaction with the data storage
� Pros: 

� it helps greatly with running on a cluster: data will be manipulated together, 
and thus should live on the same node!

� Cons:
� an aggregate structure may help with some data interactions but be an 

obstacle for others

22



CREDITS: Jimmy Lin (University of Maryland)

Transactions?
� Relational databases do have ACID transactions!
� Aggregate-oriented databases: 

� don’t have ACID transactions that span multiple aggregates
� they support atomic manipulation of a single aggregate at a time

� Part of the consideration for deciding how to aggregate data

23



CREDITS: Jimmy Lin (University of Maryland)

Key-Value Databases

24

� Strongly aggregate-oriented
� Lots of aggregates 
� Each aggregate has a key 

� Data model:
� A set of <key,value> pairs
� Value: an aggregate instance

� The aggregate is opaque to the database
� just a big blob of mostly meaningless bit

� Access to an aggregate:
� lookup based on its key



CREDITS: Jimmy Lin (University of Maryland)

Popular key-value databases

25



CREDITS: Jimmy Lin (University of Maryland)

Document databases

26

� Strongly aggregate-oriented
� Lots of aggregates 
� Each aggregate has a key

� Data model:
� A set of <key,document> pairs
� Document: an aggregate instance

� Structure of the aggregate visible
� limits on what we can place in it

� Access to an aggregate:
� queries based on the fields in the aggregate



CREDITS: Jimmy Lin (University of Maryland)

Popular document databases

27



CREDITS: Jimmy Lin (University of Maryland)

Key-Value vs Document stores
� Key-value database

� A key plus a big blob of mostly meaningless bits
� We can store whatever we like in the aggregate
� We can only access an aggregate by lookup based on its key

� Document database 
� A key plus a structured aggregate
� More flexibility in access

� we can submit queries to the database based on the fields in the aggregate
� we can retrieve part of the aggregate rather than the whole thing

� Indexes based on the contents of the aggregate

28



CREDITS: Jimmy Lin (University of Maryland)

Column(-Family) Stores
� Strongly aggregate-oriented

� Lots of aggregates 
� Each aggregate has a key

� Data model: a two-level map structure:
� A set of <row-key, aggregate> pairs
� Each aggregate is a group of pairs 

<column-key,value>

� Structure of the aggregate visible
� Columns can be organized in families

� Data usually accessed together

� Access to an aggregate:
� accessing the row as a whole

� picking out a particular column

29



CREDITS: Jimmy Lin (University of Maryland)

Properties of Column Stores 
� Operations also allow picking out a particular column

� get('1234', 'name')

� Each column:
� has to be part of a single column family
� acts as unit for access

� You can add any column to any row, and rows can have very different 
columns

� You can model a list of items by making each item a separate column.
� Two ways to look at data:

� Row-oriented
� Each row is an aggregate 
� Column families represent useful chunks of data within that aggregate.

� Column-oriented: 
� Each column family defines a record type
� Row as the join of records in all column families

30



CREDITS: Jimmy Lin (University of Maryland)

Cassandra
� Skinny row

� few columns 
� same columns used by many different rows 
� each row is a record and each column is a field 

� Wide row 
� many columns (perhaps thousands)
� rows having very different columns
� models a list, with each column being one element in that list

� A column store can contain both field-like columns and list-like 
columns

31



CREDITS: Jimmy Lin (University of Maryland)

Popular column stores

32



CREDITS: Jimmy Lin (University of Maryland)

Key Points
� An aggregate is a collection of data that we interact with as a unit.
� Aggregates form the boundaries for ACID operations with the 

database
� Key-value, document, and column-family databases can all be seen 

as forms of aggregate-oriented database
� Aggregates make it easier for the database to manage data storage 

over clusters
� Aggregate-oriented databases work best when most data 

interaction is done with the same aggregate
� Aggregate-ignorant databases are better when interactions use data 

organized in many different formations

33



CREDITS: Jimmy Lin (University of Maryland)

Relationships
� Relationship between different aggregates:

� Put the ID of one aggregate within the data of the other 
� Join: write a program that uses the ID to link data
� The database is ignorant of the relationship in the data

34



CREDITS: Jimmy Lin (University of Maryland)

Relationship management
� Many NoSQL databases provide ways to make relationships visible 

to the database
� Document stores makes use of indexes
� Riak (key-value store) allows you to put link information in metadata

� But what about updates? 
� Aggregate-oriented databases treat the aggregate as the unit of data-

retrieval. 
� Atomicity is only supported within the contents of a single aggregate.
� Updates over multiple aggregates at once is a programmer's 

responsibility!
� In contrast, relational databases provide ACID guarantees while 

altering many rows through transactions 

35



CREDITS: Jimmy Lin (University of Maryland)

Graph Databases
� Graph databases are motivated by a different frustration with 

relational databases
� Complex relationships require complex join

� Goal:
� Capture data consisting of complex relationships
� Data naturally modelled as graphs 
� Examples: Social networks, Web data, maps, networks.

36



CREDITS: Jimmy Lin (University of Maryland)

A graph database

Possible query: “find the authors of books in the Databases 
category that a friend of mine likes.”37



CREDITS: Jimmy Lin (University of Maryland)

Popular graph databases

38



CREDITS: Jimmy Lin (University of Maryland)

Data model of graph databases
� Basic characteristic: nodes connected by edges (also called arcs). 
� Beyond this: a lot of variation in data models

� Neo4J stores Java objects to nodes and edges in a schemaless fashion 
� InfiniteGraph stores Java objects, which are subclasses of built-in 

types, as nodes and edges.
� FlockDB is simply nodes and edges with no mechanism for additional 

attributes

� Queries
� Navigation through the network of edges
� You do need a starting place
� Nodes can be indexed by an attribute such as ID.

39



CREDITS: Jimmy Lin (University of Maryland)

Graph vs Relational databases
� Relational databases 

� implement relationships using foreign keys
� joins require to navigate around and can get quite expensive

� Graph databases
� make traversal along the relationships very cheap
� performance is better for highly connected data
� shift most of the work from query time to insert time
� good when querying performance is more important than insert 

speed

40



CREDITS: Jimmy Lin (University of Maryland)

Graph vs Aggregate-oriented databases
� Very different data models
� Aggregate-oriented databases 

� distributed across clusters
� simple query languages
� no ACID guarantees 

� Graph databases 
� more likely to run on a single server 
� graph-based query languages
� transactions maintain consistency over multiple nodes and edges

41



CREDITS: Jimmy Lin (University of Maryland)

Schemaless Databases
� Key-value store allows you to store any data you like under a key
� Document databases make no restrictions on the structure of the 

documents you store
� Column-family databases allow you to store any data under any 

column you like
� Graph databases allow you to freely add new edges and freely add 

properties to nodes and edges as you wish

42



CREDITS: Jimmy Lin (University of Maryland)

Pros and cons of schemaless data
� Pros:

� More freedom and flexibility
� You can easily change your data organization
� You can deal with non-uniform data

� Cons:
� A program that accesses data:

� almost always relies on some form of implicit schema
� it assumes that certain fields are present 

� The implicit schema is shifted into the application code that accesses data
� To understand what data is present you have look at the application code

� The schema cannot be used to:
� decide how to store and retrieve data efficiently 
� ensure data consistency

� Problems if multiple applications, developed by different people, access the 
same database.

43



CREDITS: Jimmy Lin (University of Maryland)

Materialized Views
� A relational view is a table defined by computation over the base tables
� Materialized views: computed in advance and cached on disk

� NoSQL databases:
� do not have views
� have precomputed and cached queries usually called “materialized view”

� Strategies to building a materialized view
� Eager approach

� the materialized view is updated at the same time of the base data
� good when you have more frequent reads than writes

� Detached approach
� batch jobs update the materialized views at regular intervals
� good when you don’t want to pay an overhead on each update

44



CREDITS: Jimmy Lin (University of Maryland)

Data Accesses in key-value store

The application can read all customer’s information by using the key
45



CREDITS: Jimmy Lin (University of Maryland)

Splitting aggregates

We can now find the orders independently from the Customer, and with the 
orderID reference in the Customer we can find all Orders for the Customer.

46



CREDITS: Jimmy Lin (University of Maryland)

Aggregates for analytics
� A view may store which Orders have a given Product in them
� Useful for Real Time Analytic

47



CREDITS: Jimmy Lin (University of Maryland)

Data Accesses in document stores
� We can query inside 

documents: 
� “find all orders that include 

the Refactoring Databases 
product”

� Removing references to 
Orders from the Customer 
object is possible

� We do not need to update 
the Customer object when 
new orders are placed by 
the Customer

48



CREDITS: Jimmy Lin (University of Maryland)

Data Accesses in column-family stores
� We can query inside rows: 

� “find all orders whose price is 
greater than 20$”

� The columns are ordered
� We can choose columns that are 

frequently used so that they are 
fetched first

� Splitting data in different 
column-family families can 
improve performance

49



CREDITS: Jimmy Lin (University of Maryland)

Data Accesses in graph databases
� We start from a (set of ) 

node(s)
� Each node has independent 

relationships with other 
nodes

� The relationships have 
names

� Relationship names let you 
traverse the graph.

50



CREDITS: Jimmy Lin (University of Maryland)
51



CREDITS: Jimmy Lin (University of Maryland)
52



CREDITS: Jimmy Lin (University of Maryland)

Key Points
� Aggregate-oriented databases make inter-aggregate relationships 

more difficult to handle than intra-aggregate relationships.
� Graph databases organize data into node and edge graphs; they 

work best for data that has complex relationship structures.
� Schemaless databases allow you to freely add fields to records, but 

there is usually an implicit schema expected by users of the data.
� Aggregate-oriented databases often compute materialized views to 

provide data organized differently from their primary aggregates. 
This is often done with MapReduce-like computations.

53


