NoSQL systems:
iIntroduction and data models

Riccardo Torlone
: Universita RomaTre
Redi @ Neosj
""e "I'S w Cassandra
. mongoDB ==ROMA NoSQL

membose sriak = A TRE Distilled

UNIVERSITA DEGLI STUDI

Leveraging the NoSQL boom

DO YOU HAVE
ANY EXPERTISE
IN SQL?
@E_ A ()
)

DOESN'T
MATTER.
WRITE:
"EXPERT IN
NO sQL"
[w2 ()

@ Leverage the NoSQL boom

Why NoSQL?

® In the last fifty years relational databases have been the default

choice for serious data storage.
® An architect starting a new project:

® your only choice is likely to be which relational database to use.

® often not even that, if your company has a dominant vendor.

* In the past, other proposals for database technology:
® deductive databases in the 1980’s
® object databases in the 1990’s
® XML databases in the 2000’s

® these alternatives never got anywhere.

The Value of Relational Databases

o Effective and efficient management of persistent data

e Concurrency control

3

plot character(2¢,1)
piate chacter(3,
pi_sat Inieger

caie
plot_oose smalint
customer_coce smalint
arceat_oose
vessel_tode

1_oustomer_0o3e
[2l
costomer characieridd.!
oust sbr characterd

® Data integration

2222 JEery
Vesselname cramcter(7s,)
num_vess sma

® A standard data mode
aloat calsn charadten i)
Pt faney
octyws ety nteger
sl deora2 1)
o standar Uucery 1anguage
Lty =ity oy
e e Charazie(10.1)
cecmjj‘; al characten(d.1)
— 1_square __Integer
wenf ot
Tsea_cong_cose
E==) = =
ongnteger outescond chaacn2t,!
nteger nen_sea cond characten21 f
N smalint e il 99 _fo_new saliet
ol onginteger
ongnteger
smalint o
cngnteger ——’
rteger orawea smailnt
loca_wrea smalint
toct smallnt
kah_ma smailnt
] |ma_ma smallnt
P vt f vt .
aard heand ol tre_ma smallnt
fshery smalnt
1at_deq Infegr
i lat_min smaint
long_ceg Integer
1_3sro_mocn T_asiro_sun :=:9.’£'\1 5:‘!“"; "
— — ong EW charac
< izt fﬂ racma smatint
s s " malint
ays sincs_epoch langrisger up_nr smallnt o o
oyl nteger w_mn smaiint
pent_cycie cecrma(32) w gz cecimas,3
quaner smaint merkd_hr smailnt
merks_min smallnt
meraltdey smannt = =0
o ste s species st Character(s1 1)
an smallnt me species_actey character(20.1)
t s smannt vessel code xan_mix smaiint
:;»"?jm s :’:;"2?"3 wo jma_mix emalint
@i seg et _siptng ema_mx smallnt
e e wo_piot bieger sk smalint
ot uid Jecknits sp_pict E emalint
an_ton bma_mix smaiint
anc_sp ma oo smalint

Figure 1: Entity Relationship Diagram (ERD) for the aer_sight database

Impedance Mismatch

e Difference between the persistent data model and the in-memory
data structures

ID: 1001 = Sl

/

customer: Ann

line items: —_

customers
0321293533 2 $48 $96

0321601912 1 $39 | $39

0131495054 1 $51 \ $51
payment details: SN

order lines
Card: Amex i [
CC Number: 12345 —
expiry: 04/2001 \

> credit cards

—

A proposal to solve the problem (1990s)

e Databases that replicate the in-memory data structures to disk

® Object-oriented databases! Task

- description: string
employees: HashSet
taskPOID <<Persistence>>

Position # getTaskPOID(): int
- title: string R d 1 # setTaskPOID(int)
positionPOID: int <<Persistence>> assigne " | + getEmployees(): HashSet
— . - setEmployees(HashSet)
getPositionPOID(): int
setPositionPOID(int) : :ddEmnl?'ye_e(Empl?ee)
1 0.*
holds
A Employee Division
0.1 | - name: string ——
position: Position 1.* worksin 1 |-name:string
tasks: I-Il.al:hs et divisionPOID <<Persistence>>
loyeePOID <<Per > # getDivisionPOID(): int

getDivision(): Division # setDivisionPOID(int)
setDivision(Division) + getEmployees(): HashSet
getEmployeePOID(): int - setEmployees(HashSet)
setEmployeePOID(int) + addEmployee(Employee)
+ getPosition(): Position +T mployee(Employee)
setPosition(Position)
+ getTasks(): HashSet
- setTasks(HashSet)
+ addTask(Task))
+ removeTask(Task) Copyright 2002-2006 Scott W. Ambler

e Faded into obscurity in a few years..
e Solution emerged:

@ ® object-relational mapping frameworks

Evolution of applications

® OO databases are dead. Why?

* SQL provides an integration mechanism between applications
® The database acts as an integration database
® Multiple applications one database

® 2000s: a distinct shift to application databases (SOA)

Web services add more ﬂexibility for the data structure being exchanged

richer data structures to reduce the number of round trips

nested records, lists, etc.

usually represented in XML or JSON.
you get more freedom of choosing a database

a decoupling between your internal database and the services with which you talk to the
outside world

Despite this freedom, however, it wasn’t apparent that application databases led
to a big rush to alternative data stores.

Relational databases are familiar and usually work very well

(or, at least, well enough)

Attack of the Clusters

* A shift from scale up to scale out

e With the explosion of data volume the computer architectures based

on cluster of commodity hardware emerged as the only solution
® but relational databases are not designed to run (and do not work

well) on clusters!

® The mismatch between relational databases and clusters led some

organization to consider alternative solutions to data storage

° Google: BigTable

® Amazon: Dynamo

NoSQL

® Term appeared in the late 90s

® open-source relational database [Strozzi NoSQL]
® tables as ASCII files, without SQL

® (Current interpretation

® June 11, 2009: meetup in San Francisco

NoSQL

® Open-source, distributed, non-relational databases
* Hashtag chosen: #NoSQL
® Main features:

Not using SQL and the relational model

Open-source projects (mostly)

Running on clusters

Schemaless

* However, no accepted precise definitions

® Most people say that NoSQL means "Not Only SQL”

Key Points

* Relational databases have been a successtul technology for twenty years,
providing persistence, concurrency control, and an integration mechanism

° Application developers have been frustrated with the impedance mismatch
between the relational model and the in-memory data structures

® There is a movement away from using databases as integration points towards
encapsulating databases within applications and integrating through services

® The vital factor for a change in data storage was the need to support large
volumes of data by running on clusters. Relational databases are not designed to
run efficiently on clusters.

® NoSQL is an accidental neologism. There is no prescriptive definition—all you
can make is an observation of common characteristics.
® The common characteristics of NoSQL databases are:
* Not using the relational model
* Running well on clusters
® Open-source

e Schemaless

(-

http://db-engines.com/en/ranking

The non-relational world

The Hard Life of a NoSQL Coder

THERE IS ONE
THING YOU
SHOULD KNOW
BEFORE ANYTHING
HAPPENS
TONIGHT

I HATE
RELATIONS

@ Part 1: The Outing

(-

NoSQL Data Models

e A data model is a set of constructs for representing the

information
® Relational model: tables, columns and rows

* Storage model: how the DBMS stores and manipulates the data
internally

® A data model is usually independent of the storage model
* Data models for NoSQL systems:

® aggregate models

key-value,
document,

column-family

° graph—based models

Aggregates

* Data as atomic units that have a complex structure
® more structure than just a set of tuples
® example:
complex record with: simple fields, arrays, records nested inside
® Aggregate in Domain-Driven Design
® a collection of related objects that we treat as a unit

® 3 unit for data manipulation and management of consistency

° Advantages of aggregates:

® ecasier for application programmers to work with

® casier for database systems to handle operating on a cluster

Customer 3 » g
name Order
} 1
1
* * *
Order Payment Order Item
Billing 1 *
Address cardNumber price
txnld
e —— *
1
Address Product
street Lodle
city
state 1
post code shipping Address
e —

Customer Orders
Id Name Id CustomerId ShippingAddressId
1 Martin 99 1 77
4
Product BillingAddress
a i Id CustomerId | AddressId
27 NoSQL Distilled 55 1 79
Or‘de r‘IteﬂI Add ress
Id OrderId | ProductId Price 1d City
OrderPayment
Id OrderId CardNumber | BillingAddressId txnId
33 99 1000-1000 55 abelif879rft

A possible aggregation

/\
< Customer > m
name Order
] 1
1
* * *
Order Payment Order Item
Billing 1 *
Address cardNumber price
txnld
e —— *
1
Address Product
street Lodle
city
state L
post code thipping Address

Aggregate representation

Customer 1
o Order
name
billing Address Le
Address * % | order payment
Sthfet 1 Order Item Payment
ci e
state shipping Address price ccinfo
post code txnid
1| billing Address
1
Product
name
S —~

Aggregate implementation

// 1n customers

{

s 12 [

"name" :"Martin",

"billingAddress": [{"city":"Chicago"}]

}

// in orders
{

"id":99,

"customerId":1,
"orderItems":[

{

"productId":27,

"price": 32.45,

"productName": "NoSQL Distilled"

}

1,
"shippingAddress":[{"city":"Chicago"}]
"orderPayment": [

{
"ccinfo":"1000-1000-1000-1000",
"txnId":"abelif879rft",
"bilTingAddress": {"city": "Chicago"}

}

1;

Another possible aggregation

name Order
} 1
1
* * *
Order Payment Order Item
Billing 1 *
Address cardNumber price
txnld
e —— *
1 ‘
Address Product
street bl
city
state 1
post code shipping Address
-

Aggregate representation (2)

Customer

name

*

billing Address | %

Address

street 1

Order

city ——
state shipping Address

post code
S —

billing Address

—

e % | order payment
Order Iltem Payment

price ccinfo

¥ txnld

*
1
Product

name

Aggregate implementation (2)

// in customers

{

"customer": {
"id": 1,
"name": "Martin",
"billingAddress": [{"city": "Chicago"}],
"orders": [
{
"id":99,
"customerId":1,
"orderItems": [
{
"productId":27,
"price": 32.45,
"productName": "NoSQL Distilled"
}
]I
"shippingAddress":[{"city":"Chicago"}]
"orderPayment" : [
{
"eccinfo":"1000-1000-1000-1000",
"txnId" :"abelif879rft",
"billingAddress": {"city": "Chicago"}
1,
}]

Design strategy

® No universal answer for how to draw aggregate boundaries

o |t depends entirely on how you tend to manipulate data!
® Accesses on a single order at a time: first solution
® Accesses on customers with all orders: second solution

° Context—specific
® some applications will prefer one or the other
® cven within a single system

® Focus on the unit of interaction with the data storage

® Pros:

® it helps greatly with running on a cluster: data will be manipulated together,
and thus should live on the same node!

® Cons:
® an aggregate structure may help with some data interactions but be an
obstacle for others

Transactions?

e Relational databases do have ACID transactions!
° Aggregate—oriented databases:
® don’t have ACID transactions that span multiple aggregates

° they support atomic manipulation of a single aggregate at a time

® Part of the consideration for deciding how to aggregate data

Staetranstions by inter mediate
INSERT, UPDATE, DELETE staes
Consistent ' \"""::313..“._‘_“_’_ e 'J" " Consistent
State T Stade?
/ e el Vo e

COMMIT >.

ROLLBACK,
error or falure

Key-Value Databases

¢ Strongly aggregate—oriented
® Lots of aggregates
® Each aggregate has a key

¢ Data model:

* A set of <key,value> pairs

vey - ———|<Key=CustomerID>

ey ____ ——t<Key=OrderID>

® Value: an aggregate Instance
e The aggregate is opaque to the database
® justa big blob of mostly meaningless bit

® Access to an aggregate:

® lookup based on its key

value

/

Popular key-value databases

&P redis

. amazon
& Frigk “Pyname
+ I3 hazelcast

Azure Cosmos DB

ORACLE
B EHCACHE NOSQL DATABASE

(-

Document databases

e Strongly aggregate—oriented ? Customer object
= Td*: i,
® Lots of aggregates “Sabe TMaPEan:
"billingAddress™: [{"city": "Chicago"}],
e Fach aggregate has a key "payment”: [

{"type": "debit",
"ccinfo": "1000-1000-1000-1000"}
¢ Data model:]

}

* A set of <key,document> pairs :
Order object

® Document: an aggregate instance '{'orderm": 99

"customerId": 1,

e Structure of the aggregate visible | "orderDate":"Nov-20-2011", _
"orderItems":[{"productId":27, "price": 32.45}],
® 1. . ll 1 .. "orderPayment'": [{"ccinfo":"1000-1000-1000-1000",
1mits on what we can place 1n 1t "txnId":"abelif879rft"}],

"shippingAddress":{"city":"Chicago"}

® Access to an aggregate: }

® queries based on the fields in the aggregate

Popular document databases

‘ mongo ' -
A ol

Q Couchbase CouchDB

YaFireb Y
oriredase o ANENDS

'.MarkLogiC‘“ + o

o? Azure Cosmos DB
®

(-

Key-Value vs Document stores

* Key-value database
* Akey plusa big blob of mostly meaningless bits
® We can store whatever we like in the aggregate

® We can only access an aggregate by lookup based on its key

® Document database
° A key plus a structured aggregate

® More ﬂexibility in access
we can submit queries to the database based on the fields in the aggregate

we can retrieve part of the aggregate rather than the whole thing

® Indexes based on the contents of the aggregate

o

Column(-Family) Stores

® Strongly aggregate-oriented
* Lots of aggregates
® Each aggregate has a key
® Data model: a two-level map structure:

* A set of <row-key, aggregate> pairs

column family

T

e Fach aggregate is a group of pairs

<column-key,value> /

® Structure of the aggregate visible mw/kzy

® Columns can be organized in families
® Data usually accessed together

® Access to an aggregate:
® accessing the row as a whole

° picking out a particular column

column key

b

column valve

L

profile

name

"martin”

bilingAddress

data ..

payment

dala ..

ODR1001

data ..

ODR1002

data ..

ODR1003

dala ..

orders

ODR1004

data ..

Properties of Column Stores

® Operations also allow picking out a particular column
e get('1234', 'name')

® Each column:
® has to be part of a single column family
® acts as unit for access

® You can add any column to any row, and rows can have very different
columns

® You can model a list of items by making each item a separate column.

* Two ways to look at data:

® Row-oriented

Each row is an aggregate

Column families represent useful chunks of data within that aggregate.
® Column-oriented:

Each column family defines a record type

Row as the join of records in all column families

Cassandra / (%»5 @
e Skinny row Y
® few columns

® same columns used by many different rows

® cach row is a record and each column is a field

* Wide row

® many columns (perhaps thousands)
® rows having very different columns

® models a list, with each column being one element in that list

® A column store can contain both field-like columns and list-like

columns

o

Popular column stores

Google sigtable

Key Points

® An aggregate is a collection of data that we interact with as a unit.

* Aggregates form the boundaries for ACID operations with the
database

* Key-value, document, and column-family databases can all be seen

as forms of aggrega‘ce—oriented database

* Aggregates make it easier for the database to manage data storage

over clusters

e Aggregate—oriented databases work best when most data

interaction is done with the same aggregate

* Aggregate-ignorant databases are better when interactions use data

organized in many different formations

Relationships

* Relationship between different aggregates:
® Put the ID of one aggregate within the data of the other
® Join: write a program that uses the ID to link data
® The database is ignorant of the relationship in the data

// in orders

{

"id".99
"customerId":1,
"orderItems": [

// in customers {

{ "productId":27,

i) - A8 "price": 32.45, o
"hame": "Martin", "productName": "NoSQL Distilled"

}
1y
"shippingAddress":[{"city":"Chicago"}]
"orderPayment™: [
{
"ccinfo":"1000-1000-1000-1000",
"txnId":"abelif879rft",
"bi11ingAddress": {"city": "Chicago"}

"billingAddress": [{"city":"Chicago"}]
}

Relationship management

® Many NoSQL databases provide ways to make relationships visible
to the database
® Document stores makes use of indexes

® Riak (key-value store) allows you to put link information in metadata

e But what about updates?
° Aggregate—oriented databases treat the aggregate as the unit of data-

retrieval.
* Atomicity is only supported within the contents of a single aggregate.
¢ Updates over multiple aggregates at once 1s a programmer's
responsibility!
® In contrast, relational databases provide ACID guarantees while

altering many rows through transactions

Graph Databases

e Graph databases are motivated by a different frustration with

relational databases

® Complex relationships require complex join

e Goal:

® Capture data consisting of complex relationships
® Data naturally modelled as graphs

® Examples: Social networks, Web data, maps, networks.

A graph database

employee

employee

=
friend ‘

end

Elizabeth

likes 3
\ykes Databases
g
OI“J,
Refactoring
NoSOL category
Dlstllled
author
Database
Refactoring
or
Pramod

category that a friend of mine likes.”

6 Possible query: “find the authors of books in the Databases

Popular graph databases

@neoy) <rientDB

B, TTAN | Virtuoso

& ArangoDB

W DS A

RORSTE RIS

03, T
3 _ AllegroGraph ORI /A
0382 0200 Uin el

© Franz Inc. 0208030 S IsuBy}
o S DA

a%y, @Q. %‘Kﬁb"

) . %'4 Hﬁu !E,.\‘! @%'.

& InfiniteGraph ~ ~ 2 ¢ »

GIRAPH

o

Data model of graph databases

® Basic characteristic: nodes connected by edges (also called arcs).

* Beyond this: a lot of variation in data models
® Neo4] stores Java objects to nodes and edges in a schemaless fashion
® InfiniteGraph stores Java objects, which are subclasses of built-in

types, as nodes and edges.

® FlockDB is simply nodes and edges with no mechanism for additional
attributes
® Queries
® Navigation through the network of edges

® You do need a starting place

® Nodes can be indexed by an attribute such as ID.

Graph vs Relational databases

e Relational databases

® implement relationships using foreign keys

° J oins require to navigate around and can get quite expensive

* Graph databases
® make traversal along the relationships very cheap
® performance is better for highly connected data
® shift most of the work from query time to insert time

° good when querying performance is more important than insert

speed

Graph vs Aggregate-oriented databases

® Very different data models

* Aggregate-oriented databases
e distributed across clusters
® simple query languages
® no ACID guarantees
* Graph databases
® more likely to run on a single server
® graph-based query languages

® transactions maintain consistency over multiple nodes and edges

Schemaless Databases

° Key—value store allows you to store any data you like under a key

® Document databases make no restrictions on the structure of the

documents you store

° Column—family databases allow you to store any data under any

column you like

* Graph databases allow you to freely add new edges and freely add

properties to nodes and edges as you wish

Pros and cons of schemaless data

® Pros:
® More freedom and ﬂexibility
® You can easily Change your data organization

® You can deal with non-uniform data

® Cons:

® A program that accesses data:
almost always relies on some form of implicit schema
it assumes that certain fields are present
® The implicit schema is shifted into the application code that accesses data
To understand what data is present you have look at the application code
® The schema cannot be used to:
decide how to store and retrieve data efficiently
ensure data consistency
® Problems if multiple applications, developed by different people, access the
same database.

Materialized Views

® A relational view is a table defined by computation over the base tables

® Materialized views: computed in advance and cached on disk

® NoSQL databases:

® do not have views

® have precomputed and cached queries usually called “materialized view”

® Strategies to building a materialized view

*® Eager approach

the materialized view is updated at the same time of the base data
good when you have more frequent reads than writes

® Detached approach
batch jobs update the materialized views at regular intervals

good when you don’t want to pay an overhead on each update

Data Accesses In key-value store

key ~__——+<Key=CustomerID>

1| <Value = Object>
valve

Customer

BillingAddress

Orders

Order

ShippingAddress

OrderPayment

OrderItem

Product

The application can read all customer’s information by using the key

/

Splitting aggregates

-

value

R

references —

-<Key=CustomerID>

.— <Value = Object>

Customer

BillingAddress

OrderID's

B

valve

referemee ——

-<Key=0rderID>

e

<Value =

Object>

Order

ShippingAddress

OrderPayment

OrderItem

Product

CustomerID

Customer object
{
"customerId": 1,
"customer": {
"name": "Martin",
"billingAddress": [{"city": "Chicago"}],
"payment": [{"type": "debit","ccinfo": "1000-1000-1000-1000"}],
"orders":[{"orderId":99}]
}
}

Order object

{

"customerId": 1,

"orderId": 99,

"order":{
"orderDate": "Nov-20-2011",
"orderItems":[{"productId":27, "price": 32.45}],
“"orderPayment": [{"ccinfo":"1000-1000-1000-1000",

"txnId":"abelif879rft"}],

"shippingAddress": {"city":"Chicago"}

We can now find the orders independently from the Customer, and with the

@ orderID reference in the Customer we can find all Orders for the Customer.

Aggregates for analytics

* A view may store which Orders have a given Product in them

e Useful for Real Time Analytic

{

"itemid":27,
"orders":{99,545,897,678}
}

{

"itemid":29,
"orders":{199,545,704,819}
}

Data Accesses in document stores

® We can query inside ? Customer object
documents: "customerId": 1,
"name'": "Martin",
® “find all orders that include "billingAddress": [{"city": "Chicago"}],
"payment": [

the Refactoring Databases {"type": "debit",
” "ccinfo": "1000-1000-1000-1000"}
product]
) }
* Removing references to
Order object
Orders from the Customer ¢
. . . "orderId": 99,
object is possﬂ)le "customerId": 1,
"orderDate":"Nov-20-2011",

e We do not need to update "orderItems":[{"productld”:27, "price": 32.45}],
"orderPayment":[{"ccinfo":"1000-1000-1000-1000",

the Customer object when "txnId":"abelif879rft"}],
"shippingAddress":{"city":"Chicago"}

new orders are placed by }

the Customer

Data Accesses in column-family stores
® We can query inside rows: f: Customerld :\ i Qrdarty j\
® “find all orders whose price is [custonermro || |[ordervetasts]
greater than 20$” Name Since \ gar(tigr Customer
® The columns are ordered Q o M {Value} {Value WJ

® We can choose columns that are |{ ‘ I\ . y
1]

frequently used so that they are

fetched first -l Prod!uctn 1
* Splitting data in different Frd ”] F) ’ 1 rd W r’ 1
column-family families can LValueJ) LValueJ LvalueJ -“LValueJ

improve performance

Data Accesses in graph databases

® We start from a (set of)

node(s

() Customer

* Each node has independent / \
relationships with other . X BELONGS_T0

nodes / PURCHASED \

e The relationships have Address = OrderPayment

names \ /

PAID_WITH
SHIPPED_TO PART_OF =

* Relationship names let you
traverse the graph. \ /
v

Order

£

Key-Value

Stop following me, you fucking freaks!

Ordered Key-Value Big Table Document, Graph sQL
Full-Text Search

L ICE I LE]

L I—"La]

L]
LS IS I L]
" CEICE I L]

L&

“Delivery)\
“projects” : [

{

“name” : “Easy Sign

b Semi-Structured Data

Plain Text
$ a confidential word or n

Time Value
stamp

Column
Family

The continued evolution of Databases

Key Points

e Aggregate—oriented databases make inter-aggregate relationships

more difficult to handle than intra-aggregate relationships.

* Graph databases organize data into node and edge graphs; they

work best for data that has complex relationship structures.

® Schemaless databases allow you to freely add fields to records, but

there is usually an implicit schema expected by users of the data.

e Aggregate—oriented databases often compute materialized views to
provide data organized differently from their primary aggregates.
This is often done with MapReduce—like computations.

