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Leveraging the NoSQL boom
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Why NoSQL?
� In the last fifty years relational databases have been the default 

choice for serious data storage.
� An architect starting a new project:

� your only choice is likely to be which relational database to use. 
� often not even that, if your company has a dominant vendor.

� In the past, other proposals for database technology: 
� deductive databases in the 1980’s
� object databases in the 1990’s
� XML databases in the 2000’s
� these alternatives never got anywhere.
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The Value of Relational Databases
� Effective and efficient management of persistent data
� Concurrency control
� Data integration
� A standard data model
� A standard query language
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Impedance Mismatch
� Difference between the persistent data model and the in-memory 

data structures
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A proposal to solve the problem (1990s)
� Databases that replicate the in-memory data structures to disk 
� Object-oriented databases!

� Faded into obscurity in a few years..
� Solution emerged:

� object-relational mapping frameworks6
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Evolution of applications
� OO databases are dead. Why?

� SQL provides an integration mechanism between applications
� The database acts as an integration database
� Multiple applications one database

� 2000s: a distinct shift to application databases (SOA)
� Web services add more flexibility for the data structure being exchanged
� richer data structures to reduce the number of round trips

� nested records, lists, etc.
� usually represented in XML or JSON.
� you get more freedom of choosing a database

� a decoupling between your internal database and the services with which you talk to the 
outside world

� Despite this freedom, however, it wasn’t apparent that application databases led 
to a big rush to alternative data stores.

Relational databases are familiar and usually work very well 
(or, at least, well enough)
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Attack of the Clusters
� A shift from scale up to scale out

� With the explosion of data volume the computer architectures based 
on cluster of commodity hardware emerged as the only solution

� but relational databases are not designed to run (and do not work 
well) on clusters!

� The mismatch between relational databases and clusters led some 
organization to consider alternative solutions to data storage

� Google: BigTable
� Amazon: Dynamo
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NoSQL
� Term appeared in the late 90s 

� open-source relational database [Strozzi NoSQL]
� tables as ASCII files, without SQL

� Current interpretation
� June 11, 2009: meetup in San Francisco
� Open-source, distributed, non-relational databases
� Hashtag chosen: #NoSQL
� Main features:

� Not using SQL and the relational model
� Open-source projects (mostly)
� Running on clusters
� Schemaless

� However, no accepted precise definitions
� Most people say that NoSQL means "Not Only SQL”
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Key Points
� Relational databases have been a successful technology for twenty years, 

providing persistence, concurrency control, and an integration mechanism
� Application developers have been frustrated with the impedance mismatch 

between the relational model and the in-memory data structures
� There is a movement away from using databases as integration points towards 

encapsulating databases within applications and integrating through services
� The vital factor for a change in data storage was the need to support large 

volumes of data by running on clusters. Relational databases are not designed to 
run efficiently on clusters.

� NoSQL is an accidental neologism. There is no prescriptive definition—all you 
can make is an observation of common characteristics.

� The common characteristics of NoSQL databases are:
� Not using the relational model
� Running well on clusters
� Open-source
� Schemaless
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Popularity

http://db-engines.com/en/ranking
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The non-relational world
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NoSQL Data Models
� A data model is a set of constructs for representing the 

information
� Relational model: tables, columns and rows

� Storage model: how the DBMS stores and manipulates the data 
internally

� A data model is usually independent of the storage model
� Data models for NoSQL systems:

� aggregate models
� key-value, 
� document, 
� column-family

� graph-based models
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Aggregates
� Data as atomic units that have a complex structure 

� more structure than just a set of tuples
� example:

� complex record with: simple fields, arrays, records nested inside

� Aggregate in Domain-Driven Design
� a collection of related objects that we treat as a unit
� a unit for data manipulation and management of consistency

� Advantages of aggregates:
� easier for application programmers to work with
� easier for database systems to handle operating on a cluster
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Example
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Relational implementation

15



CREDITS: Jimmy Lin (University of Maryland)

A possible aggregation
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Aggregate representation
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Aggregate implementation
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Another possible aggregation
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Aggregate representation (2)
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Aggregate implementation (2)
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// in customers
{
"customer": {
"id": 1,
"name": "Martin",
"billingAddress": [{"city": "Chicago"}],
"orders": [

{
"id":99,
"customerId":1,
"orderItems":[
{
"productId":27,
"price": 32.45,
"productName": "NoSQL Distilled"
}

],
"shippingAddress":[{"city":"Chicago"}]
"orderPayment":[

{
"ccinfo":"1000-1000-1000-1000",
"txnId":"abelif879rft",
"billingAddress": {"city": "Chicago"}
}],

}]
}
}
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Design strategy
� No universal answer for how to draw aggregate boundaries
� It depends entirely on how you tend to manipulate data! 

� Accesses on a single order at a time: first solution
� Accesses on customers with all orders: second solution

� Context-specific
� some applications will prefer one or the other
� even within a single system

� Focus on the unit of interaction with the data storage
� Pros: 

� it helps greatly with running on a cluster: data will be manipulated together, 
and thus should live on the same node!

� Cons:
� an aggregate structure may help with some data interactions but be an 

obstacle for others
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Transactions?
� Relational databases do have ACID transactions!
� Aggregate-oriented databases: 

� don’t have ACID transactions that span multiple aggregates
� they support atomic manipulation of a single aggregate at a time

� Part of the consideration for deciding how to aggregate data
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Key-Value Databases
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� Strongly aggregate-oriented
� Lots of aggregates 
� Each aggregate has a key 

� Data model:
� A set of <key,value> pairs
� Value: an aggregate instance

� The aggregate is opaque to the database
� just a big blob of mostly meaningless bit

� Access to an aggregate:
� lookup based on its key
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Popular key-value databases
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Document databases
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� Strongly aggregate-oriented
� Lots of aggregates 
� Each aggregate has a key

� Data model:
� A set of <key,document> pairs
� Document: an aggregate instance

� Structure of the aggregate visible
� limits on what we can place in it

� Access to an aggregate:
� queries based on the fields in the aggregate
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Popular document databases
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Key-Value vs Document stores
� Key-value database

� A key plus a big blob of mostly meaningless bits
� We can store whatever we like in the aggregate
� We can only access an aggregate by lookup based on its key

� Document database 
� A key plus a structured aggregate
� More flexibility in access

� we can submit queries to the database based on the fields in the aggregate
� we can retrieve part of the aggregate rather than the whole thing

� Indexes based on the contents of the aggregate
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Column(-Family) Stores
� Strongly aggregate-oriented

� Lots of aggregates 
� Each aggregate has a key

� Data model: a two-level map structure:
� A set of <row-key, aggregate> pairs
� Each aggregate is a group of pairs 

<column-key,value>

� Structure of the aggregate visible
� Columns can be organized in families

� Data usually accessed together

� Access to an aggregate:
� accessing the row as a whole

� picking out a particular column
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Properties of Column Stores 
� Operations also allow picking out a particular column

� get('1234', 'name')

� Each column:
� has to be part of a single column family
� acts as unit for access

� You can add any column to any row, and rows can have very different 
columns

� You can model a list of items by making each item a separate column.
� Two ways to look at data:

� Row-oriented
� Each row is an aggregate 
� Column families represent useful chunks of data within that aggregate.

� Column-oriented: 
� Each column family defines a record type
� Row as the join of records in all column families
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Cassandra
� Skinny row

� few columns 
� same columns used by many different rows 
� each row is a record and each column is a field 

� Wide row 
� many columns (perhaps thousands)
� rows having very different columns
� models a list, with each column being one element in that list

� A column store can contain both field-like columns and list-like 
columns
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Popular column stores
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Key Points
� An aggregate is a collection of data that we interact with as a unit.
� Aggregates form the boundaries for ACID operations with the 

database
� Key-value, document, and column-family databases can all be seen 

as forms of aggregate-oriented database
� Aggregates make it easier for the database to manage data storage 

over clusters
� Aggregate-oriented databases work best when most data 

interaction is done with the same aggregate
� Aggregate-ignorant databases are better when interactions use data 

organized in many different formations

33



CREDITS: Jimmy Lin (University of Maryland)

Relationships
� Relationship between different aggregates:

� Put the ID of one aggregate within the data of the other 
� Join: write a program that uses the ID to link data
� The database is ignorant of the relationship in the data
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Relationship management
� Many NoSQL databases provide ways to make relationships visible 

to the database
� Document stores makes use of indexes
� Riak (key-value store) allows you to put link information in metadata

� But what about updates? 
� Aggregate-oriented databases treat the aggregate as the unit of data-

retrieval. 
� Atomicity is only supported within the contents of a single aggregate.
� Updates over multiple aggregates at once is a programmer's 

responsibility!
� In contrast, relational databases provide ACID guarantees while 

altering many rows through transactions 
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Graph Databases
� Graph databases are motivated by a different frustration with 

relational databases
� Complex relationships require complex join

� Goal:
� Capture data consisting of complex relationships
� Data naturally modelled as graphs 
� Examples: Social networks, Web data, maps, networks.
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A graph database

Possible query: “find the authors of books in the Databases 
category that a friend of mine likes.”37



CREDITS: Jimmy Lin (University of Maryland)

Popular graph databases
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Data model of graph databases
� Basic characteristic: nodes connected by edges (also called arcs). 
� Beyond this: a lot of variation in data models

� Neo4J stores Java objects to nodes and edges in a schemaless fashion 
� InfiniteGraph stores Java objects, which are subclasses of built-in 

types, as nodes and edges.
� FlockDB is simply nodes and edges with no mechanism for additional 

attributes

� Queries
� Navigation through the network of edges
� You do need a starting place
� Nodes can be indexed by an attribute such as ID.
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Graph vs Relational databases
� Relational databases 

� implement relationships using foreign keys
� joins require to navigate around and can get quite expensive

� Graph databases
� make traversal along the relationships very cheap
� performance is better for highly connected data
� shift most of the work from query time to insert time
� good when querying performance is more important than insert 

speed
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Graph vs Aggregate-oriented databases
� Very different data models
� Aggregate-oriented databases 

� distributed across clusters
� simple query languages
� no ACID guarantees 

� Graph databases 
� more likely to run on a single server 
� graph-based query languages
� transactions maintain consistency over multiple nodes and edges
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Schemaless Databases
� Key-value store allows you to store any data you like under a key
� Document databases make no restrictions on the structure of the 

documents you store
� Column-family databases allow you to store any data under any 

column you like
� Graph databases allow you to freely add new edges and freely add 

properties to nodes and edges as you wish
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Pros and cons of schemaless data
� Pros:

� More freedom and flexibility
� You can easily change your data organization
� You can deal with non-uniform data

� Cons:
� A program that accesses data:

� almost always relies on some form of implicit schema
� it assumes that certain fields are present 

� The implicit schema is shifted into the application code that accesses data
� To understand what data is present you have look at the application code

� The schema cannot be used to:
� decide how to store and retrieve data efficiently 
� ensure data consistency

� Problems if multiple applications, developed by different people, access the 
same database.
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Materialized Views
� A relational view is a table defined by computation over the base tables
� Materialized views: computed in advance and cached on disk

� NoSQL databases:
� do not have views
� have precomputed and cached queries usually called “materialized view”

� Strategies to building a materialized view
� Eager approach

� the materialized view is updated at the same time of the base data
� good when you have more frequent reads than writes

� Detached approach
� batch jobs update the materialized views at regular intervals
� good when you don’t want to pay an overhead on each update
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Data Accesses in key-value store

The application can read all customer’s information by using the key
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Splitting aggregates

We can now find the orders independently from the Customer, and with the 
orderID reference in the Customer we can find all Orders for the Customer.

46



CREDITS: Jimmy Lin (University of Maryland)

Aggregates for analytics
� A view may store which Orders have a given Product in them
� Useful for Real Time Analytic
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Data Accesses in document stores
� We can query inside 

documents: 
� “find all orders that include 

the Refactoring Databases 
product”

� Removing references to 
Orders from the Customer 
object is possible

� We do not need to update 
the Customer object when 
new orders are placed by 
the Customer
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Data Accesses in column-family stores
� We can query inside rows: 

� “find all orders whose price is 
greater than 20$”

� The columns are ordered
� We can choose columns that are 

frequently used so that they are 
fetched first

� Splitting data in different 
column-family families can 
improve performance

49



CREDITS: Jimmy Lin (University of Maryland)

Data Accesses in graph databases
� We start from a (set of ) 

node(s)
� Each node has independent 

relationships with other 
nodes

� The relationships have 
names

� Relationship names let you 
traverse the graph.
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Key Points
� Aggregate-oriented databases make inter-aggregate relationships 

more difficult to handle than intra-aggregate relationships.
� Graph databases organize data into node and edge graphs; they 

work best for data that has complex relationship structures.
� Schemaless databases allow you to freely add fields to records, but 

there is usually an implicit schema expected by users of the data.
� Aggregate-oriented databases often compute materialized views to 

provide data organized differently from their primary aggregates. 
This is often done with MapReduce-like computations.
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