
Design and Development of a Tool for
Integrating Heterogeneous Data Warehouses

Riccardo Torlone and Ivan Panella

Dipartimento di Informatica e Automazione
Università degli studi Roma Tre

torlone@dia.uniroma3.it

Abstract. In this paper we describe the design of a tool supporting
the integration of independently developed data warehouses, a problem
that arises in several common scenarios. The basic facility of the tool is
a test of the validity of a matching between heterogeneous dimensions,
according to a number of desirable properties. Two strategies are then
provided to perform the actual integration. The first approach refers to
a scenario of loosely coupled integration, in which we just need to iden-
tify the common information between sources and perform drill-across
queries over them. The goal of the second approach is the derivation of a
materialized view built by merging the sources, and refers to a scenario
of tightly coupled integration in which queries are performed against the
view. We illustrate architecture and functionality of the tool and the
underlying techniques that implement the two integration strategies.

1 Introduction

Today, a common practice for building a data warehouse is to develop a series
of individual data marts, each of which provides a dimensional view of a single
business process. These data marts should be based on common dimensions and
facts, but very often they are developed independently, and it turns out that
their integration is a difficult task. Indeed, the need for combining autonomous
(i.e., independently developed and operated) data marts arises in other common
cases. For instance, when different companies get involved in a federated project
or when there is the need to combine a proprietary data warehouse with external
data, perhaps wrapped from the Web.

We have studied this problem from a conceptual point of view, by introducing
the notion of dimension compatibility underlying data mart integration [4], which
extends an earlier notion proposed by Kimball [7]. Intuitively, two dimensions
(belonging to different data marts) are compatible if their common information
is consistent. Building on this study, in this paper we illustrate the design of
a practical integration tool for multidimensional databases, similar in spirit to
other tools supporting heterogeneous data transformation and integration [9].

The basic facility of the tool is the integration of a pair of autonomous di-
mensions. We have identified a number of desirable properties that a matching
between dimensions (that is, a one-to-one correspondence between their levels)



should satisfy: the coherence of the hierarchies on levels, the soundness of the
paired levels, according to the members associated with them, and the consis-
tency of the functions that relate members of different levels within the matched
dimensions. The tool makes use of a powerful technique, the chase of dimensions,
to test for these properties.

Two different integration strategies are supported by the system. The first
one refers to a scenario of loosely coupled integration, in which we need to
identify the common information between sources (intuitively, the intersection),
while preserving their autonomy. This approach supports drill-across queries [7],
based on joining data over common dimension, to be performed over the original
sources. The goal of the second approach is rather merging the sources (intu-
itively, making the union) and refers to a scenario of tightly coupled integration,
in which we need to build a materialized view that embeds the sources. Under
this approach, queries are performed against the view built from the sources.

The integration of heterogenous databases has been studied in the litera-
ture extensively (see, for instance, [5, 8, 12]). In this paper, we take apart the
general aspects of the problem and concentrate our attention on the specific
problem of integrating multidimensional data. Differently from the general case,
this problem can be tackled in a more systematic way for two main reasons.
First, multidimensional databases are structured in a rather uniform way, along
the widely accepted notions of dimension and fact. Second, data quality in data
warehouses is usually higher than in generic databases, since they are obtained
by reconciling several data sources. To our knowledge, the present study is the
first systematic approach to this problem. Some work has been done on the
problem of integrating data marts with external data, stored in various formats:
XML [6, 10] and object-oriented [11]. This is related to our tightly coupled ap-
proach to integration, in that dimensions are “enriched” with external data.
Moreover, our loosely coupled approach to integration is related to the problem
of drill-across [1]. However, the goal of these studies is different from ours.

The rest of the paper is organized as follows. In Section 2 we provide the
basic notions underlying our approach. In Section 3 we illustrate the techniques
for dimension integration and describe how they can be used to integrate au-
tonomous data marts. In Section 4 we present architecture and functionality of
the tool and finally, in Section 5, we sketch some conclusions.

2 Matching Autonomous Dimensions

In this section we illustrate the basic issues of dimension matching and provide
a fundamental technique, the d-chase, for the management of matchings.

2.1 The framework of reference

We refer to a very general data model for multidimensional databases based
on the basic notions of dimension and data mart. A dimension represents a
perspective under which data analysis can be performed and consists of entities



called members. Members of a dimension can be the days in a time interval or
the products sold by a company. Each dimension is organized into a hierarchy
� of levels, corresponding to domains grouping dimension members at different
granularity. Levels in a product dimension can be the category and the brand of
the items sold. The members of the bottom element of a dimension (with respect
to �) represent real world entities that are called ground. Within a dimension,
members at different levels are related through a family of roll-up functions
that map members having a finer grain (e.g., a product) to members having a
coarser grain (e.g., a brand) according to �. A data mart associates measures
to members of dimensions and is used to represent factual data. As an example,
Figure 1 shows a Sales data mart that has the quantity, the income and the
cost of a sale as measures and is organized along the dimensions Product, Time,
Store, and Promotion.

Daily Sales Facts
Product
Day
Store
Promotion

Product
Dimension (p1)

product (SKU)

categorybrand

Time
Dimension (t1)

day

month

year

week

Promotion
Dimension (m1)

promotion

price red. typemedia type

Store
Dimension (s1)

store

city

state
Quantity Sold
Sales Dollar Amount
Cost Dollar Amount

Fig. 1. Sales data mart

2.2 Properties of dimension matchings

The basic problem of the integration of two autonomous data marts is the defi-
nition of a matching between their dimensions, that is, a (one-to-one) injective
partial mapping between the corresponding levels. An example is illustrated in
Figure 2, which shows a matching between two heterogeneous geographical di-
mensions.

Location
Dimension (d2)

Store
Dimension (d1)

store

district

city

state zone

country

shop

town

province

area

region

state

Fig. 2. A matching between two dimensions

We have identified a number of desirable properties that a matching µ be-
tween two dimensions d1 and d2 should satisfy.



– Coherence: µ is coherent if, for each pair of levels l, l′ of d1 on which µ is
defined, l �1 l′ if and only if µ(l) �2 µ(l′);

– Soundness: µ is sound if, for each level l of d1 on which µ is defined, there
exists a bijection between the members of l and µ(l);

– Consistency: µ is consistent if, for each pair of levels l �1 l′ of d1 on which µ
is defined, the roll-up function from l to l′ coincides with the roll-up function
from µ(l) to µ(l′).

A total matching that is coherent, sound and consistent is called a perfect match-
ing. Clearly, a perfect matching is very difficult to achieve in practice. In many
cases however, autonomous dimensions actually share some information. The
goal of the tool we have developed is the identification of this common informa-
tion to perform drill-across operations between heterogeneous data marts.

2.3 Chase of dimensions

The d-chase is a powerful technique inspired by an analogous procedure used
for reasoning about dependencies in the relational model [2], which can be used
to test for consistency and to combine the content of heterogeneous dimensions.
Given a matching µ between two dimensions d1 and d2, this procedure takes as
input a special matching tableau Tµ[d1, d2], built over the members of d1 and
d2, and generates another tableau that, if possible, satisfies the roll-up functions
defined for d1 and d2.

A matching tableau Tµ[d1, d2] has a tuple for each ground member m of d1

and d2 and includes members associated with m by roll-up functions and possibly
variables denoting missing information. An example of a matching tableau for
the matching between dimensions in Figure 2 is the following.

store district city prov. region zone state country

1st v1 NewYork v2 v3 v4 NY USA
2nd Melrose LosAng. v5 v6 U2 CA USA
1er Marais Paris v7 v8 E1 v9 France

1mo v10 Rome RM Lazio E1 v11 Italy
1st v12 NewYork v13 v14 U1 v15 USA
1er v16 Paris 75 IledeFr E1 v17 France

In this example, the first three tuples represent members of d1 and the others
members of d2. Note that a variable occurring in a tableau may represents an
unknown value (for instance, in the third row, the region in which the store 1er
is located, an information not available in the instance of d1) or an inapplicable
value (for instance, in the last row, the district in which the store 1er is located,
a level not present in the scheme of d2). The value of a tuple t over a level l will
be denoted by t[l].

The d-chase modifies values in a matching tableau, by applying chase steps. A
chase step applies when there are two tuples t1 and t2 in T such that t1[l] = t2[l]
and t1[l′] �= t2[l′] for some roll up function from l to l′ and modifies the l′-values
of t1 and t2 as follows: if one of them is a constant and the other is a variable



then the variable is changed (is promoted) to the constant, otherwise the values
are equated. If a chase step tries to identify two constants, then we say that the
d-chase encounters a contradiction and the process stops.

By applying the d-chase procedure to the matching tableau above we do not
encounter contradictions and obtain the following tableau in which, for instance,
v4 has been promoted to U1 and v16 to Marais.

store district city prov. region zone state country
1st v1 NewYork v2 v3 U1 NY USA
2nd Melrose LosAng. v5 v6 U2 CA USA
1er Marais Paris 75 IledeFr E1 v9 France
1mo v10 Rome RM Lazio E1 v11 Italy

The d-chase provides an effective way to test for consistency since it is pos-
sible to show a matching µ between two dimensions d1 and d2 is consistent if
and only if the chase Tµ[d1, d2] terminates without encountering contradictions.
Moreover, it turns out that if we apply the d-chase procedure over a matching
tableau that involves a dimension d and then project the result over the levels
of d, we obtain the original instance and, possibly, some additional information
that has been identified in the other dimension.

3 Integration techniques

In this section we illustrate two different approaches to the problem of the inte-
gration of autonomous data marts.

3.1 A loosely coupled approach

In a loosely coupled integration scenario, we need to identify the common in-
formation between various data sources and perform drill-across queries over
the original sources. Therefore, our goal is just to select data that is shared be-
tween the sources. Thus, given a pair of dimensions d1 and d2 and a matching
µ between them, the approach aims at deriving two expressions that makes µ
perfect.

We have elaborated an algorithm that generates two expressions of dimension
algebra that describe, in an abstract way, data manipulations over dimensions [4].
This algorithm is based on three main steps: (i) a test for coherence that takes
advantage of the transitivity of �, (ii) a test for consistency based on the appli-
cation of the d-chase, and (iii) the derivation of the selections, projections and
aggregations to be performed on the input dimensions in order to select common
information.

As an example, the application of this algorithm to the dimension matching
reported in Figure 2 returns a pair of expressions that, applied to the original
dimensions, generates the dimensions reported on the left hand side of Figure 3.

We have proved that the execution of this algorithm always returns two
expressions that correctly compute the intersection of two dimensions if and
only if the dimensions are compatible [4].



Dimension E2(d2)Dimension E1(d1)

store

city

zone

country

shop

town

area

state

New Store
Dimension (d)

zone

province

region

province

region

state

store

district

city

state

store and shop

shop

Fig. 3. The dimensions generated by the first algorithm (left) and by the second algo-
rithm (right) on the matching in Figure 2

3.2 A tightly coupled approach

In a tightly coupled integration, we want to build a materialized view that com-
bines different data sources and perform queries over this view. In this case,
given a pair of dimensions d1 and d2 and a matching µ between them, the in-
tegration technique aims at deriving a new dimension obtained by merging the
levels involved in µ and including, but taking apart, all the other levels.

We have elaborated an algorithm that performs this task [4]. This algorithm
is also based on three main steps: (i) a test for coherence that takes advantage
of the transitivity of �, (ii) a test for consistency based on the application of the
d-chase, and (iii) the derivation of a new dimension obtained by projecting the
result of the d-chase over the “union” of the schemes of the input dimensions.
If the union of the schemes produces two minimal levels, the algorithm is more
involved since it generates an auxiliary bottom level.

As an example, consider again the matching between dimensions in Figure 2
but assume that the level store does not map to the level shop. This means
that the corresponding concepts are not related. It follows that the union of
the schemes of the two dimensions produces two minimal levels. In this case,
the application of algorithm to this matching introduces a new bottom level
below store and shop. The scheme of the dimension generated by the algorithm
is reported on the right hand side of Figure 3.

We have proved that the execution of this algorithm always returns a dimen-
sions d that “embeds” the original dimensions, in the sense that they can be
obtained by applying a dimension expression over d [4].

3.3 Data mart integration

Drill-across queries are usually used to combine and correlate data from multiple
data marts [7]. These queries are based on joining different data marts over
common dimensions and so the existence of shared information between data
marts is needed in order to obtain meaningful results.



The loosely coupled approach supports drill-across queries between data
marts in that it aims at identifying the intersection between their dimensions.
Assume, for instance, that we wish to correlate the Sales data mart reported in
Figure 1 with the data mart storing weather information reported in Figure 4,
according to the matchings between the time and the location dimensions as
indicated on the right hand side of Figure 4.

Weather Facts

Time
Weather Condition
Weather Station

Weather Condition
Dimension (wc2)

...

...

...

...

Weather Station
Dimension (ws2)

weather station

city

stateTemperature
Pressure
Humidity

Time
Dimension (t2)

day

month

year

time of day day

month

year

time of day

day

month

year

week

day

month

year

time of day

day

month

year

week

weather station

city

state

store

city

state

weather station

city

state

store

city

state

Fig. 4. A weather data mart and a matching between its dimensions and the dimensions
of the data mart in Figure 4

The application of algorithm illustrated in the previous section to this input
checks for compatibility of dimensions and returns two pairs of expressions that
select the members in common in the matched dimensions. It turns out that we
can join the two data marts to extract daily and city-based data, but hourly or
store-based data can not be computed. Moreover, if we apply these expressions to
the underlying dimensions before executing the drill-across operation we prevent
inconsistencies in subsequent aggregations over the result of the join. It follows
that drill-across queries can be defined over the virtual view shown in Figure 5.

Weather Facts
by Day and City

Time
Weather Condition
Location

Weather Condition
Dimension (wc2)

Matched Location
Dimension (s1∩ws2)

city

state

Avg Temperature
Avg Pressure
Avg Humidity

Matched Time
Dimension (t1∩t2)

day

month

year

Daily Sales Facts
by City

Product
Day
Store city
Promotion

Quantity Sold
Sales Dollar Amount
Cost Dollar Amount

Product
Dimension (p1)

Promotion
Dimension (m1)

Fig. 5. A virtual view over the Sales and the Weather data marts

The tightly coupled approach aims at combining data from different dimen-
sions by computing their union rather than their intersection. Consider again the
example above. If we apply the corresponding algorithm over the same input we
obtain two new dimensions that can be materialized and used for both data



marts. Hence, we can then refer to the homogenous scheme reported in Figure 6
to perform drill-across queries.

Weather Facts

Time
Weather Condition
Weather Station

Weather Condition
Dimension (wc2)

Matched Location
Dimension (s1Uws2)

Temperature
Pressure
Humidity

Matched Time
Dimension (t1Ut2)

Daily Sales Facts
Product
Day
Store
Promotion

Quantity Sold
Sales Dollar Amount
Cost Dollar Amount

Product
Dimension (p1)

Promotion
Dimension (m1)

day

month

year

week

time of day

weather station

city

state

store

s & w

Fig. 6. A materialized view over the merged dimensions

4 The integration tool

The various techniques described in the previous section have been implemented
in an interactive tool (screenshots are reported in Figure 7).

Fig. 7. The integration tool

The tool allows the user to:

1. access to data marts stored in a variety of systems (DB2, Oracle, SQL Server,
among others);

2. import from these systems metadata describing cubes and dimensions and
translate these descriptions into a uniform internal format;

3. specify matchings between heterogeneous dimensions, by means of a graph-
ical interface;

4. suggest possible matching between levels of heterogeneous dimensions;



5. test for coherence, consistency, and soundness of matchings;
6. generate the intersection of two dimensions, according to the the loosely

integration approach;
7. merge two dimensions, according to the tightly integrated approach;
8. perform drill-across queries over heterogeneous data marts whose dimensions

have been matched according to either the tightly coupled approach or the
loosely coupled one.
Function 4 relies on a number of heuristics that try to infer whether two levels

of different dimensions can refer to the same concept. Currently, we have followed
a rather simple approach based on the name of the levels and on the existence of
shared members. We are currently investigating more involved techniques based
on the use of data dictionaries. This is however outside the original goal of our
project.

The basic components of the tool architecture are reported in Figure 8.

Import/Export
Manager

DW 1

DWMS 1

DW Interface 1

User inteface

DW k

DWMS k

Query
Processor

Dimension
Manager

Integrator

Data
Dictionary

Data
Dictionary

DW Interface k

Data
Repository

Fig. 8. The architecture of the integration tool

A number of external data warehouses stored in different systems are ac-
cessed by the tool through DW Interfaces that are able to: (i) extract meta data
describing the sources, (ii) translate these descriptions into an internal repre-
sentation that is based on the multidimensional model described in Section 2,
and (iii) store this representation in a data dictionary. The Dimension Manager
is in charge to specify and verify matching between dimensions. The Integra-
tor module performs the actual integrations of pair of dimensions according to
the either the loosely coupled approach or the tightly coupled one. In the latter
case, a new dimension is built and the corresponding members are stored in
a local data repository. Finally, the Query Processor receives requests of drill-
across queries over autonomous data marts and, on the basis of the information
available in the internal repositories, performs queries to the external systems
through the corresponding DW interfaces.

5 Conclusion

We have illustrated in this paper the development of a tool for the integration of
heterogeneous multidimensional databases. We have first addressed the problem



from a conceptual point of view, by introducing the desirable properties of co-
herence, soundness and consistency that “good” matchings between dimensions
should enjoy. We have then presented two practical approaches to the problem
that refer to the different scenarios of loosely and tightly coupled integration.
We have then presented a practical tool that implements the various techniques
and can be effectively used to perform drill-across queries between heterogeneous
data warehouses. The first experimentations demonstrate the effectiveness of the
approach and show a reasonable efficiency. We are currently working to further
improve the performance of the tool.

We believe that the techniques presented in this paper can be generalized
to much more general contexts in which, similarly to the scenario of this study,
we need to integrate heterogenous sources and we possess a taxonomy of con-
cepts that describe their content (e.g., an ontology. This is subject of current
investigation.

References

1. A. Abelló, J. Samos, and F. Saltor. On relationships Offering New Drill-across Pos-
sibilities. In ACM Fifth Int. Workshop on Data Warehousing and OLAP (DOLAP
2002), pages 7–13, 2002.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

3. L. Cabibbo and R. Torlone. A logical Approach to Multidimensional Databases.
In Sixth Int. Conference on Extending Database Technology (EDBT’98), Springer-
Verlag, pages 183–197, 1998.

4. L. Cabibbo and R. Torlone. Integrating Heterogeneous Multidimensional Data-
bases. In 17th Int. Conference on Scientific and Statistical Database Management
(SSDBM’05), 2005.

5. A. Elmagarmid, M. Rusinkiewicz, and A. Sheth. Management of Heterogeneous and
Autonomous Database Systems. Morgan Kaufmann, 1999.

6. M.R. Jensen, T.H. Møller, and T.B. Pedersen. Specifying OLAP Cubes on XML
Data. J. Intell. Inf. Syst., 17(2-3): 255–280, 2001.

7. R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling. John Wiley & Sons, Second edition, 2002.

8. M. Lenzerini. Data Integration: A Theoretical Perspective. In 21st ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems, pages 233-246, 2002.

9. R.J. Miller, M.A. Hernández, L.M. Haas, L. Yan, C.T.H. Ho, R. Fagin, and L. Popa.
The Clio Project: Managing Heterogeneity. SIGMOD Record, 30(1): 78–83, 2001.

10. X. Yin and T.B. Pedersen. Evaluating XML-extended OLAP queries based on
a physical algebra. In ACM Int. Workshop on Data Warehousing and OLAP
(DOLAP’04), pages 73–82, 2004

11. T.B. Pedersen, A. Shoshani, J. Gu, and C.S. Jensen. Extending OLAP Querying
to External Object Databases. In Int. Conference on Information and Knowledge
Management, pages 405–413, 2000.

12. E. Rahm and P.A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. VLDB Journal, 10(4):334-350, 2001.


