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1.  Introduction 
 

The ability to represent information in an abstract and implementation-independent way is crucial 
in the life cycle of every information system application, not only in its design but also in its 
operational phase.  This is particularly true in the context of data warehousing and OLAP where, 
because of the level of complexity, application development and management are usually difficult 
and error-prone tasks. 

In spite of this, conceptual data models for data warehousing have received little attention for 
a long period in the applicative area. Traditionally, multidimensional applications are modeled in 
a way that strictly depends on the corresponding implementation.  One of the most used 
formalisms for data representation in this context is the relational model, which is clearly well 
suited in the case of a ROLAP implementation.  In general however, using a logical data model 
has a number of negative consequences.  First, a logical representation is conceived to describe, at 
the appropriate level of abstraction, how data is stored in a specific DBMS, but it is usually not 
expressive enough to capture in an effective way the essential, multidimensional aspects of a data 
warehousing application.  Second, it is difficult to define a design methodology that includes a 
general, conceptual step, independent of any specific system but suitable for all.  Finally, in 
specifying aggregations of data, analysts often need to take care of tedious details that refer to the 
distribution of the information along the various structures used for its storage.  For these reasons, 
data warehouse developers today understand that conceptual data models and methodologies are 
fundamental ingredients for the realization of good-quality products and for effective employment 
of their content. 

It is now widely accepted that traditional conceptual data models, such as the Entity-
Relationship model, are not appropriate for description of the multidimensional and aggregative 
nature of OLAP applications.  For this reason, a variety of multidimensional data models have 
recently been proposed by both academic and industry communities, although it should be noted 
that a consensus on formalism or even a common terminology has not yet emerged. 



In this chapter, we first discuss the requirements that an ideal conceptual multidimensional 
model should fulfill. These requirements are suggested by general information system modeling 
principles and the specific characteristics of OLAP applications. Building on these requirements, 
we then present a general conceptual multidimensional data model and show how it can be used 
to describe the basic aspects of a business application in a way that is easy to understand and 
independent of the criteria for actual data organization in the various systems. Far from being 
complete, this model aims at capturing the core of the various proposals of multidimensional data 
models and the conceptual means adopted by OLAP systems for data representation and 
manipulation.  The model relies on a few agreed concepts.  The basic notions are the dimension 
and the data cube. A dimension represents a business perspective under which data analysis is to 
be performed and is organized in a hierarchy of levels, which correspond to different ways to 
group its elements.  A data cube represents factual data on which the analysis is focused and 
associates measures with coordinates, defined over a set of dimension levels. 

Starting from the characteristics of the model proposed, we summarize the general features 
that a multidimensional conceptual model should support. We then survey various 
multidimensional models proposed and relate their characteristics to these general features 
Finally, we discuss the main  points raised in the chapter and some problems that remain to be 
solved in this context. 

We do not address query languages, which are clearly strictly related to the subject of data 
models, as they are described in Chapter 10. 
 

2 Background and terminology 
 

2.1  Conceptual data models and data warehousing 
 

A data model is for a database designer what a box of colors is for a painter:  it provides a means 
for drawing representations of reality.  Indeed, it has been claimed that “data modeling is an 
art” [23], even if the product of this activity has the prosaic name of database scheme. 

When a data model allows the designer to devise schemes that are easy to understand and can 
be used to build a physical database with any actual software system, it is called conceptual [4]. 
This name comes from the fact that a conceptual model tends to describe concepts of the real 
world, rather than the modalities for representing them in a computer. 

Many conceptual data models exist with different features and expressive powers, mainly 
depending on the application domain for which they are conceived. As we have said in the 
Introduction, in the context of data warehousing it was soon realized that traditional conceptual 
models for database modelling, such as the Entity-Relationship model, do not provide a suitable 
means to describe the fundamental aspects of such applications.  The crucial point is that in 
designing a data warehouse, there is the need to represent explicitly certain important 
characteristics of the information contained therein, which are not related to the abstract 
representation of real world concepts, but rather to the final goal of the data warehouse: 
supporting data analysis oriented to decision making.  More specifically, it is widely recognized 
that there are at least two specific notions that any conceptual data model for data warehousing 
should include in some form: the fact (or its usual representation, the data cube) and the 
dimension. A fact is an entity of an application that is the subject of decision-oriented analysis 
and is usually represented graphically by means of a data cube. A dimension corresponds to a 



perspective under which facts can be fruitfully analyzed. Thus, for instance, in a retail business, a 
fact is a sale and possible dimensions are the location of the sale, the type of product sold, and the 
time of the sale. 

Practitioners usually tend to model these notions using structures that refer to the practical 
implementation of the application.  Indeed, a widespread notation used in this context is the “star 
schema” (and variants thereof) [29] in which facts and dimensions are simply relational tables 
connected in a specific way.  An example is given in Figure 1. Clearly, this low level point of 
view barely captures the essential aspects of the application.  Conversely, in a conceptual model 
these concepts would be represented in abstract terms which is fundamental for concentration on 
the basic, multidimensional aspects that can be employed in data analysis, as opposed to getting 
distracted by the implementation details. 

 

 
 

Figure 1:  An example of star schema 
 
 

Before tackling in more detail the characteristics of conceptual models for multidimensional 
applications, it is worth making two general observations.  First, we note that in contrast to other 
application domains, in this context not only at the physical (and logical) but also at the 
conceptual level, data representation is largely influenced by the way in which final users need to 
view the information.  Second, we recall that conceptual data models are usually used in the 
preliminary phase of the design process to analyze the application in the best possible way, 
without implementation “contaminations”. There are however further possible uses of 
multidimensional conceptual representations.  First of all, they can be used for documentation 
purposes, as they are easily understood by non-specialists.  They can also be used to describe in 



abstract terms the content of a data warehousing application already in existence.  Finally, a 
conceptual scheme provides a description of the contents of the data warehouse which, leaving 
aside the implementation aspects, is useful as a reference for devising complex analytical queries. 
 

2.2 Modelling Multidimensional Applications 
 

Let us now investigate in more detail, but still informally, the fundamental ingredients of a 
conceptual data model for data warehousing.  We start from the observation made above that the 
effectiveness of data warehousing modeling strictly depends on the ability to describe factual data 
according to appropriate dimensions, that is, “perspectives” under which data can be analyzed.  
For instance, in a data warehousing application for a retail company it is useful to organize data 
along dimensions such as products commercialized by the company, stores selling these products 
and days on which sales occur.  To better support data analysis, it is useful to organize a 
dimension into a hierarchy of levels, obtained by grouping elements of the dimension according 
to the analysis needs.  For instance, we might be interested in grouping products into brands and 
categories, and days into months and years.  When the members of a level l can be grouped to 
members of another level l’  it is often said that l rolls up to l’. For instance, the level “product” 
rolls up to the level “brand”. A level usually has descriptive attributes (or simply descriptions) 
associated with it.  For instance, descriptions of a store include its name, manager, and address.  

Let us consider a more concrete example, which will be used as a simple case study 
throughout this chapter. 
 
Example 2.1 The Toys4All company produces and sells a large number of products (mainly toys) 
in a chain of stores, over a wide territory. 

A main business goal for this company could be to understand the impact of promotions on 
sales, that is, how promotions influence product sales and to what  extent promotions are 
profitable. Another important business goal could be the analysis of the warehouse process, 
where inventory levels should be measured monthly, for each product and warehouse controlled 
by the company. It follows that possible dimensions of the Toys4All data warehouse application 
are Product, Store, Warehouse, Time, and Promotion. The Product dimension may be organized 
into levels such as item (whose members are products such as Disney’s Dinosaur and Duplo 
Pooh), product-line (containing members like Mattel’s Disney and Lego Duplo), brand (Mattel 
and Lego), category (Popular Characters and Blocks), and department (Action Figures and 
Blocks). The elements of the Time dimension describe days over a period of time; this dimension 
may be organized into the levels day, month, quarter, year, and season. A member of the level day 
might be Feb 27, 2001. Members of the level day can be grouped to members of the level month, 
but also to members of the level season (e.g., Carnival). Descriptions of the item level might be its 
name and code. ■ 

  
Traditionally, the entities of an application subject to decision-oriented analysis are called facts 
and the specific and measurable aspects of a fact relevant for the analysis are known as measures. 
A collection of measures for the same fact can be nicely represented by means of a data cube (or 
hypercube) having a “physical” dimension for each “conceptual” dimension of measurement: a 
coordinate of the data cube specifies a combination of level members and the corresponding cell 
contains the measure associated with such a combination.  

 



Example 2.2 For the Toys4All company, a possible fact is the daily sale. This fact can be 
analyzed with respect to the day of the sale, the product sold, the store of the sale, and the 
promotion applied to the daily sale.  The measurements made for each daily sale could include 
the number of units sold, the income and the cost.  Thus, a data cube Sales can be used to 
describe daily information about the items sold by the stores of the chain.  An instance of this 
data cube can state the fact that on Feb 27, 2001 the store Colosseum has sold 2 pieces of Duplo 
Pooh, applying a Carnival 2001 Promotion, for a corresponding gross income of 19.98 Euros 
against a cost of 14.98 Euros.  

In the warehouse process, measurable facts are the inventory levels, to be measured, for 
instance, monthly, for each product and warehouse. They can be modeled by means of a data 
cube Inventory. The measurements made for each monthly inventory could include the inventory 
level (the quantity in stock at the end of the month), the quantity shipped during the month, and 
the value at cost of the quantity in stock.  ■ 

 
In the next section we will try to formalize the general notions discussed in this section. 

 

3 A conceptual multidimensional model 
 

We now present a simple multidimensional data model “MD” that provides a number of 
constructs to describe, in an abstract but natural way, the basic notions involved in 
multidimensional analysis.  As is customary in database models, we make a clear distinction 
between the scheme (which specifies the structure of a concept) and the instance (that is, the 
actual values associated with a concept). 
 

3.1 Formal definition of MD 
 

We assume the existence of a finite set of base types such as text, integer, decimal, and date. Each 
base type t is associated with a domain of base values of that type.  We also assume the existence 
of a countable set of names and a countable set of identifiers (ids). Such ids are values, distinct 
from base values, that are used to uniquely identify real life objects. 

A dimension has three main components: a set of levels, a set of level descriptions and a 
hierarchy over the levels. 

 
Definition 3.1 [Dimension scheme] An MD dimension scheme D consists of:   
 

 a finite set L of names called levels;  
 

 a finite set ∆ of names called level descriptions, for each level in L; each description is 
associated with a base type t;  

 
 a partial order ≤ called roll up relation on the levels in L;  if l1 ≤ l2 we say that l1 rolls up 

to l2.   

 



There is a natural graphical representation of an MD dimension. Some examples are reported in 
Figure 2. In this representation, levels are depicted by means of round-cornered boxes and there is 
a direct arc between the two levels l1 and l2 if l1 ≤ l2. Small diamonds depict the descriptions of a 

level. 
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Figure 2:  Dimension scheme in the MD model 

 
 

Example 3.1 Figure 2 reports the dimensions for the Toys4All company, as described in Example 
2.1 :  Time, Product, Store, Promotion and Warehouse. 

As an example, let us consider in more detail the Time dimension. Its levels are day, month, 
quarter, year, and season. The roll-up relation on Time is the reflexive and transitive closure of 
the sets of pairs (day, month), (month, quarter), (quarter, year), and (day, season). Thus, for 
instance, the level day rolls up to the level month, but also to the level year. Descriptions of the 
level day are date, day-of-week (mapping each day to the name of the corresponding day), day-
number-in-month (mapping each day to the number of the day within its month), and day-
number-overall (coding days in consecutive day numbers).  ■ 

 
Let us now state precisely what is an instance of a dimension scheme. 

 
Definition 3.2 [Dimension instance]  An instance of a dimension D=(L, ∆, ≤) consists of:   
 

 a finite set of (real world) objects, each of which has a unique id associated with it, for 
each level l in L, called members of l;  



 
 a function from the members of l to the domain of base type t associated with l, for each 

level description in ∆;  
 

 a roll-up function ROLL-UP l
1
→ l

2
  from the members of l1 to the members of l2, for each pair 

of levels l1 and l2 in L such that l1 ≤ l2;  if m2= ROLL-UP l
1
→ l

2
(m1) we say that m1 rolls up to 

m2.  

 
The roll-up functions of a dimension instance must satisfy the following consistency conditions.   
 
Condition 3.1 [Consistency of roll-up] The family of roll-up functions of a dimension are 
consistent if: 
 

1. for each level l, the function ROLL-UP l → l is the identity on the members of l;  and  
 
2. if a level l1 rolls up to l2 in different ways (e.g., rolling up through either l' or l'') then the 

members of l1 roll up to elements of l2 in a consistent way, that is:  

 
ROLL-UP l1→ l’ (ROLL-UP l’→ l2

  (m)) =  ROLL-UP l1→ l’’  (ROLL-UP l’’→ l2
  (m)) 

 
for each member m of l1.  

 
Note that, as is customary in conceptual models, a member of a dimension level is not a value 

but is the object itself (e.g., a member of the store level is the actual building, not its name and 
address). In fact, although this object has an id and a number of values (the descriptions) 
associated with it, its existence and identity are clearly independent of them. 

We are now ready to introduce the general notion of multidimensional database scheme. This 
has two main components: a collection of dimensions and a number of data cube schemes, which 
are defined over levels of the dimensions. 

 
Definition 3.3 [Multidimensional Scheme] A multidimensional scheme consists of:   
 

 a finite set D of dimension schemes;  
 

 a finite set F of data cube schemes of the form:   
 

f [A1 : l1, ... , An : ln]  → [M1 : m , ... , Mk : mk], 

 
where f is a name, each Ai (1 ≤ i ≤ n) is a distinct name called attribute of f, each li is a 

level of D, each Mj (1 ≤  j ≤  k) is a distinct name called measure of f, and each mj is either 

a base type or a level of D.  
 

Note that in MD there is a uniform treatment of measures and dimensions, as a measure can be 
not only a simple value but also a level of a dimension.  This allows the analyst to transform 



measures into attributes and vice versa [9], an important functionality that any OLAP system 
should have [39]. 

Data cube schemes can also be naturally represented by means of diagrams.  An example that 
refers to the dimensions in Figure 2 is given in Figure 3:  facts are represented by boxes and 
measures by circles. 
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Figure 3:  Two data cube schemes over the dimensions in Figure 2 
 
 

 
Example 3.2 A multidimensional scheme for the business processes of the Toys4All Company, 
described in Example 2.1  and Example 2.2 can be defined using the dimension schemes of 
Example 3.1 . Specifically, two data cubes, Sales and Inventory, can be used to model the sale 
process and the warehouse process, respectively. The schemes of these data cubes are 
represented graphically in Figure 3. 

The data cube Sales describes daily sales, detailed by item, store and promotion. Its attributes 
are time (at the day level of the time dimension, describing the day in which the sale occurred), 
item (the product sold), store (the store having sold the product), and promotion (the promotion 
applied to the sale). Its measures are unit-sales (the number of items sold), euro-sales (the income 
of the sale, in Euros), and euro-cost (the cost price of the items sold). 

The data cube Inventory is instead used to represent the inventory levels of the various 
products, detailed by warehouse and month. Specifically, inventory levels are measured at the 
end of each month. The measures of this data cube are quantity-on-hand (the quantity in stock of 
a product at the end of the month), quantity-shipped (the quantity shipped from the warehouse 
during the month), and value-at-cost (the value of the quantity in stock, at cost price). ■ 

 
Before introducing the notion of instance of a data cube scheme, two preliminary notions are 

needed. 
Let D = (D,F) be a multidimensional scheme,  f [A1 : l1,..., An : ln] → [M1 : m ,..., Mk : mk], 

be a data cube scheme in F and d be an instance of D. 
 

Definition 3.4 [Conceptual coordinate] A (conceptual) coordinate for f over d is a tuple over the 
attributes of f, that is, a function mapping each attribute Ai to a member of the level li occurring 

in d.  



 
Definition 3.5 [Fact] A fact for f over d is a tuple over the measures of f, that is, a function 
mapping each measure name Mj to either a value (if mj is a base type) or a member in d (if mj is a 

level).  
 

We are now ready to introduce the notion of instance of a multidimensional scheme. 
 

Definition 3.6 [Instance of multidimensional scheme] An instance of a multidimensional 
database scheme (D,F) is composed of:   
 

 a dimension instance d for each dimension scheme in D;  
 
 a partial function called data cube mapping coordinates for f over d to facts for f over d, 

for each data cube scheme f in F.  
 

An entry of a data cube c is a coordinate over which the instance of c is defined. 
 

 
SALES   

time item store promotion unit-sales euro-sales euro-cost 
d423 p98 s12 pr111 2 19.98 14.98 
d423 p41 s12 pr1 3 44.94 28.20 
d423 p56 s21 pr111 1 2.99 1.10 
d424 p98 s12 pr1 1 11.99 7.49 
... ... ... ... ... ... ... 

 
 

INVENTORY   
time    item    warehouse    quantity-on-hand   quantity-shipped  value-at-cost 
m13 p98 w2 100 60 749.00 
m13 p41 w3 80 100 752.00 
m14 p98 w2 50 70 374.50 
... ... ... ... ... ... 

 
Figure 4:  A sample instance over the multidimensional scheme of Example 3.2  

  
 

Example 3.3 A possible instance for the multidimensional scheme of Example 3.2 is shown in 
Figure 4. In this example, level members are represented by their ids. 

A coordinate over the data cube scheme Sales is, for example,  
 

[time : d423, item : p98, store : s12, promotion : pr111] 

 
where d423 is, for instance, the id associated with the physical item at hand. 

The actual instance associates with this entry the value 2 for the measure unit-sales, the value 
19.98 for the measure euro-sales, and the value 14.98 for the measure euro-cost. ■ 



 
In Figure 4, data cubes are (graphically) represented as a table.  This representation suggests 

how data cubes can be implemented using the relational model:  a data cube over a scheme f can 
be represented by a relation over the attributes of f, with additional columns for the measures.  
The attributes of f form the key of the relation.  In practice, a data cube having n attributes and m 
measures can also be represented by means of an n-dimensional array in which each (non null) 
entry corresponds to an entry of f and is associated with an m-tuple of measures. This 
representation recalls the way in which multidimensional systems usually store data, thus 
confirming that the MD is a conceptual model which describes multidimensional data 
independently of any specific (logical) implementation. 

It is apparent that the notation we have used for coordinates resembles subscripting into a 
multi-dimensional array (although in a non-positional way). However, there is an important 
difference between data cubes and multi-dimensional arrays.  Specifically, in arrays, “physical” 
coordinates vary over intervals within (linearly-ordered) domains of values, whereas domains 
over which coordinates range in the MD model are conceptual entities.  In this sense, our notion 
of coordinate is “conceptual”. 

Roll-up functions are a distinctive feature of the model proposed: they describe intensionally 
how members of different levels are related.  This description is independent of any effective 
implementation:  roll-up functions can be implemented by means of materialized relations, built-
in functions, or external procedures.  Moreover, roll-up functions provide a powerful tool for 
querying multidimensional data, as they can be used to specify how data can be grouped, and how 
data cubes involving data at different levels of granularity can be joined [7, 9]. 
 

3.2  Basic Features of a Multidimensional Model 
 

The MD data model presented in the previous section exhibits those fundamental features that any 
multidimensional model should include in some form in order to be suitable for OLAP 
applications.  According to Pedersen [39] and Blaschka et al. [6], these “mandatory” features can 
be summarized as follows. 
 

 Explicit separation of structure and contents. This is indeed a basic requirement of 
database models that make a clear distinction between the schema, which describes the 
structure of data, and the instances, which correspond to the actual contents.  

 
 Explicit notions of dimension and data cube. These are the basic concepts of 

multidimensional data representation, as we have discussed in  Section 2.  
 

 Explicit hierarchies in dimensions. A dimension should be structured into a hierarchy of 
levels to suggest the modalities in which data can be grouped along dimensions.  

 
 Multiple hierarchies in each dimension. In one dimension, there can be more than one 

path along which to aggregate data. This is captured in MD by having a partial order 
relationship between the levels of a dimension.  

 



 Level attributes. Other descriptive properties of the analysis dimensions, independent of 
the hierarchy relationship among levels, should also be representable.  Level descriptions 
are used in MD for this purpose.  

 
 Measures sets. This refers to the possibility of defining complex cell structures (grouping 

more than one measure) related to the same fact.  In MD this is implemented by 
associating several measures to the same cube coordinate.  

 
 Symmetrical treatment of dimensions and measures. The data model should allow 

measures to be treated as dimensions and vice versa.  This is important because there are 
concepts (for instance, the age of customers) that can be measured (for instance, the 
average age of customers can be of interest) but which can also be used to group facts.  
This aspect is implemented in MD by allowing measures to be defined over dimension 
levels. This solution also makes it possible to register factual data at different 
granularities.  

 

3.3  Advanced Features of a Multidimensional Model 
 

There are a number of further advisable features that a conceptual multidimensional model should 
support.  We have classified these features as “advanced” because they model concepts that:  
either: (i) are difficult to represent in a simple way (such as the notion of “summarizability”), or 
(ii) serve to capture specific application cases.  Adopting once more a terminology inherited from 
Pedersen [39] and Blaschka et al. [6], these basic features can be summarized as follows. 
 

 Support for aggregation semantics. The data model should provide a support for the 
identification of aggregations whose result is incorrect, that is, meaningless to the user.  
This undesirable situation may occur for two main reasons.  

 
− A single fact can be counted more than once.  Let us consider for instance the data 

cube Sales of our case study, whose scheme is described in Example 3.2 and reported 
in Figure 3. If we need the number of sales with respect to a specific media used for 
their promotion, we should only count a given sale once, even if several promotions 
have been applied to the sale.  

 
− Some types of aggregation along certain paths of a dimension can be meaningless for a 

specific type of measure.  For example, it may not be meaningful to add inventory 
levels of different products together, but calculating their average may make sense. 
This concept is strictly related to the notion of summarizability studied in the context 
of statistical databases [32, 46], which defines when an aggregation, for instance, total 
sales, can be calculated by directly combining results from lower-level aggregations, 
for instance, the sales for each store.  This problem has been recently investigated by 
various authors [25, 31].  

 
 Support for non-standard aggregations of facts. There are various possible cases. 

  



− Non-strict hierarchies. The hierarchy of levels in a dimension is non-strict if some of 
the mappings between the members of one level to the members of a higher level are 
many-to-many rather than one-to-many relationships.  In our example, the Product 
dimension, described in Example  2.1  and represented in Figure 2, becomes non-strict 
if, for instance, a product can be classified according to different categories.  The MD 
model can be extended to include non-strict hierarchies by assuming that the mappings 
ROLL-UP l

1
→ l

2 
are simple binary relations over members of levels l1 and l2 such that l1 

rolls up to l2, rather than functions.  

 
− Non-onto hierarchies. A hierarchy in a dimension is “onto” if, for each member m of a 

level there is a member m' of a lower level (if any) such that m' rolls up to m. This 
property is not satisfied in our case study if, for example, there is a brand in an 
instance of the Product dimension (see Figure 2) with no associated product.  In MD 
non-onto hierarchies are allowed as no restrictions are posed on the functions ROLL-UP 

l
1
→ l

2
, which can be therefore non-onto.  

 
− Non-covering hierarchies. A hierarchy in a dimension is non-covering if the member 

of a level rolls up to a member of a higher level in the hierarchy by “skipping” one or 
more intermediate levels.  In the Toys4All example this may happen if, for example, 
in an instance of the Store dimension (see again Figure 2) there is a member of the 
Store level that rolls up to a member of the State level, without rolling up to any 
members of the City level.  This would occur if the corresponding store is located not 
in a city but in a rural area.  In MD non-covering hierarchies can be supported by 
allowing the roll-up functions to be partial.  

 
− Many-to-many relationships between facts and dimensions. It may happen that the 

relationship between a fact and its corresponding dimensions is not a many-to-one 
mapping.  In our case study, it may be the case that a specific sale (a row in the fact 
cube reported in Figure 4) is actually associated with a combination of promotions 
rather than just one. This is not strictly forbidden in the model (new rows can be added 
for this purpose) but can lead to incorrect aggregations (see above). This problem can 
be solved in many cases with an appropriate instantiation of the dimensions [42].  

 
 Handling change and time. Schemes and data change over time, and there may sometimes 

be an interest in performing analysis across changes.  In our example, a category of 
products might be moved from one department to another and it is wished to analyze the 
impact of this change on the number of sales.  The problem of the management of slowly 
changing dimensions [29] is related to this aspect. The maintenance of data cubes under 
dimension updates is also a relevant problem and has been recently investigated [26]. 
Temporal analysis can also be of interest;  for instance, the variations in inventory levels 
over time.  Approaches taken in temporal data models [52] could be applied to deal with 
these cases.  

 
 Handling imprecision. Any real application must deal with the intrinsic problem of 

imprecision in representing and managing information.  This problem has been widely 
studied in conceptual modeling.  However, few studies have addressed this interesting and 



important problem in the context of multidimensional analysis, where imprecise data (for 
instance, the presence of missing values) can lead to incorrect results in calculating 
aggregations [16, 41]. A simple way to include a notion of imprecision in the 
measurement of facts in MD is to allow the presence of null values in data cubes.  
Conversely, incomplete knowledge of the dimensions hierarchies can be taken into 
account by assuming that the roll-up functions are partial.  

 
 

4.  An overview of Multidimensional Data Models 
 

In this section we briefly report on data models that have been proposed for multidimensional 
databases, in relation to the requirements reported in the previous section.  A more thorough 
examination and comparison of many such models can be found in several survey papers 
appearing in the literature [6, 39, 44, 55]. General discussion on OLAP, multidimensional 
analysis, and data warehousing can be found in [11, 12, 13, 27, 48]. Mendelzon has published a 
rather comprehensive on-line bibliography on this subject [34]. Further up-to-date information 
can be found in specialized Web sites, for instance [21, 43]. 

It should be said that some of the models cited in this section cannot be classified as 
“conceptual” in the sense specified in Section 2. However, they are mentioned to provide a 
general overview of the state of the art in both the research community and commercial systems. 

According to the classification proposed by Pedersen [39], data warehousing models can be 
divided into three main categories: cube models, multidimensional models, and statistical models. 
In the first category are simple models that provide a the notion of cube but in which the concept 
of dimension is modeled to only a limited extent. Conversely, multidimensional models allow 
representation of dimensions in structured (although different) ways.  With the statistical model 
we finally denote the large body of work in the area of statistical database modeling, which is 
strictly related to the multidimensional approach [50]. 
 

4.1  Cube models 
 

Simple cube models [14, 20, 22, 29] treat data in the form of n-dimensional cubes.  They all have 
a more or less explicit notion of fact, measure and dimension. However, the hierarchy between 
the various levels of aggregation in a dimension is not explicitly captured by the schema, so the 
user cannot infer from the schema that, for instance, City rolls up to State and not the opposite.  
The star schema approach [29] (and its variants, like the snowflake scheme), in which a central 
relational table represents the fact on which the analysis is focused, and a number of tables, 
usually de-normalized, represent the dimensions of analysis, should also be considered a cube 
model as it is semantically equivalent to these, although at a lower level of abstraction. 

The majority of models adopted by commercial systems [43, 38] should also be included in 
this category.  Modelling aspects are covered by commercial systems in a pragmatic way.  The 
representation used in ROLAP (Relational OLAP) systems is the star schema [29], whose limit in 
representing the multidimensional aspects of OLAP applications at the right level of abstraction 
has already been discussed.  In MOLAP (Multidimensional OLAP) systems [13], information is 
represented directly in multidimensional form, but the structure of a dimension is usually hard 
coded in the physical index structures used to access data. 



 

4.2  Multidimensional models 
 

Multidimensional models [3, 7, 8, 16, 17, 28, 30, 33, 35, 36, 37, 40, 54] capture the hierarchies in 
the dimensions explicitly, providing a better understanding of the application and a support for 
easy data cube manipulation. This information may also be useful for query formulation and 
optimization.  

Interestingly, while the basic features are more or less covered by these models, each of them 
represents the dimension structure very differently; e.g., by using grouping relations [33], 
dimension merging functions [3], measure graphs [16], roll-up functions [8, 35], level 
lattices [54], hierarchy schemes and instances [28], or an explicit tree-structured hierarchy as part 
of the cube [30, 36]. 

A number of data models have also been defined by extending traditional conceptual data 
models [49]. Others have used known paradigms (e.g., object-orientation [1] and nested structure 
models [15]) or specific metaphors (e.g., tapes [18]). Finally, several data models have been 
proposed with the main goal of studying specific data warehousing application problems, such as 
incomplete information [16, 41], efficiency issues [24, 28], heterogeneous dimensions [25], 
dimension updates [26] and temporal OLAP queries [35], and so are well suited for them. 
 

4.3  Statistical models 
 

The last group is statistical database models [5, 44, 45, 46, 50, 53]. A great deal of relevant work 
has already been done in this area.  Shoshani [50] made a very interesting comparison of work 
done in statistical and multidimensional databases. This revealed that after taking apart the 
terminology used, the two areas have a lot of overlap, even if each of them has emphasized 
different aspects. In particular, research in statistical databases has focused on the treatment of 
complex classification structures, management of certain special dimensions (e.g., spatial and 
geographic), and on the important issues (especially from the statistical point of view) of privacy 
and summarizability. On the other hand, OLAP literature has emphasized data warehouse design, 
query processing and, above all, efficiency issues. It is however clear that, though the emphasis is 
on different aspects, work done in one area can greatly benefit the other [50].  

A statistical data model is usually based on the notions of summary table,  summary attribute 
and category attribute. Actually, there is a close correspondence between these notions and the 
concepts used in multidimensional data models. Specifically, a summary table corresponds 
essentially to a data cube, a summary attribute to a measure, and a category attribute to a 
dimension. As in multidimensional models, a category attribute is always associated with a 
hierarchy of concepts. A number of operators are usually introduced in statistical models to 
manipulate, concatenate and aggregate summary tables. 

Notable examples of conceptual statistical models are STORM [46] and Mefisto [45].  In 
particular, Mefisto introduces the important notion of statistical entity, the conceptual counterpart 
of the notion of summary table. 

In statistical models, a structured classification hierarchy is almost always coupled with an 
explicit aggregation function on a single measure to produce a sort of pre-defined object capable 
of answering a specific set of queries.  This approach is sometimes less flexible than the 



approaches usually taken by multidimensional models, but unlike most of these, it can provide an 
effective way to avoid incorrect results from queries.   
 

5.  Future Trends and Conclusions 
 

In this chapter, we have discussed the requirements that an ideal conceptual multidimensional 
model should fulfill.  These are suggested by general information system modeling principles and 
by the specific characteristics of OLAP applications.  Starting from these requirements, we have 
presented a simple conceptual multidimensional data model, called MD, which can be used to 
describe the basic aspects of a business application in a way that is easy to understand and is 
independent of the criteria for actual data organisation in the various systems.  With this model, 
we have tried to capture both the conceptual means used in business applications to describe 
information and the core of the various multidimensional data models proposed in the scientific 
literature or adopted by commercial systems.  The model relies on two principal, agreed concepts:  
the dimension and the data cube. A dimension represents a business perspective under which data 
analysis is to be performed and is organized in a hierarchy of levels. The levels of a dimension 
correspond to different ways of grouping dimensions members.  A data cube represents the 
factual data on which the analysis is focused and associates measures with coordinates, defined 
over a set of dimension levels.  Using these concepts as a reference, we have summarized the 
general features that a multidimensional conceptual model should support and mentioned the 
various multidimensional models which have been proposed. 

Clearly, much work remains to be done in this area.  First of all, the use of conceptual data 
models has still difficulties to overcome in the applicative area and the research community 
should clearly demonstrate the benefits in to be gained by adopting them.  Moreover, with such a 
proliferation of data models, a commonly accepted formalism is strongly advisable.  This is 
fundamental for support of interoperability and standardization. Another problem that still needs 
to be solved is the definition of an effective and general methodology for the development of 
OLAP applications, an important aspect which has received little attention [8, 19, 29]. This would 
also lead to the development of CASE tools which, in contrast to the present situation, were not 
strictly related to a specific OLAP system. Devising a common standard declarative language is 
also of high importance and the use of a conceptual multidimensional model (independent of the 
underlying physical model) could give useful results in the area of logical optimization and 
caching rules (in order to exploit the possibility of reusing existing data cubes for the computation 
of new ones). Finally, there are a number of specific problems, such as the characterization of 
summarizability, for which a definitive solution has not yet been given. 
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